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Abstract

This article extends the application of global games of Goldstein and Pauzner (2005) in the

banking model of Diamond and Dybvig (1983) to account for correlation in the quality of banksí

long term investment, when banks are linked through cross deposits and there is a central bank.

The goal is to study how these elements a§ect the deposit contract that banks o§er to depositors

and the ex ante probability of a bank run. We show that the coexistence of a central bank,

which determines banksí reserve requirements, and an interbank market, which redistributes

reserves, leads to a smaller probability of a bank run and to less ine¢cient bank runs, relative

to the case with no central bank and no interbank market. By adequately choosing the level

of reserves to store, the central bank can improve the equilibrium outcome and allow banks to

o§er a higher interim payment to depositors, relative to the situation with no cross deposits.
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1 Introduction

The risk of bank runs is an inevitable feature of any banking system. Banks take short term

deposits from lenders and make longer term investments. Since the pioneering work of Diamond

and Dybvig in 1983, it is well understood that this ´ maturity transformation ª is arguably the

key function of a bank. On the downside, it brings with it the risk that depositors may ask for

their money in large numbers at a time when the bank does not have the liquid resources to meet

these demands.

This paper focuses on three elements of bank runs in reality, which combined are less well-

understood. The Örst element is the fact that information about the quality of banksí long-run

investments is not perfect. The second element is the fact that the quality of banksí investments

may be correlated. The third one is the fact that banks exchange cross deposits through the

interbank market.

The collapse of large Önancial institutions observed during the early stages of the global Önancial

crisis of 2007-2012 illustrates the importance of imperfect information and correlation of banksí

investment strategies. In this regard, in a June 2008 speech, U.S. Treasury Secretary Timothy

Geithner, then President and CEO of the New York Federal Reserve Bank, referred to the freezing

of credit markets observed some months before and placed signiÖcant blame on the ´ run ª of

entities in the ´ parallel ª banking system, being engaged in the same type of investment strategies,

for which Önancial innovation had made it di¢cult to evaluate the quality of their investments.1

This paper extends the application of global games of Goldstein and Pauzner (2005) in the

banking model of Diamond and Dybvig (1983) to examine how, in the presence of an interbank

market and a central bank, imperfect information about the quality of banksí long-run investments,

which can be correlated, a§ects the deposit contract that banks o§er to depositors and the ex-ante

probability of a bank run.

As in Goldstein and Pauzner (2005), we show that there is a unique Bayesian equilibrium, in

which a bank run occurs if the quality of banksí long-run investments is below some threshold.

What is nonetheless speciÖc to our paper is that we demonstrate that the adequate interaction

between the central bank and the interbank market can lead to a smaller probability of a bank

run and to less ine¢cient bank runs, relative to the case with no central bank and no interbank

market.2

In our model, there are three periods, three regions and three banks. Each bank has a disjoint

set of depositors. In the initial period, the central bank, common to all regions, determines the

1The importance of correlation has also been stressed by Acharya and Yorulmazer (2007) and Farhi and Tirole

(2011), who theoretically show that banks have incentives to correlate their risk in the expectation of systemic

bailouts.
2Wang (2012) has already added the government to the Goldstein and Pauzner (2005) model, to study how the

announcement of bailouts a§ects the probability of a bank run.
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fraction of deposits that banks must store as reserves, if they choose to participate in the interbank

market. After observing this level of reserves, the three regional banks decide whether to participate

or not. Next, they o§er a demand deposit contract to all agents willing to deposit their endowment

in the bank

In the interim period, the interbank market allows banks with di§erent needs for liquidity, to

redistribute the reserves stored by them in the Örst period. The reserves are redistributed through

cross deposits; the central bank coordinates this redistribution.

Our modeling of the interbank market is motivated by the way banks interconnect in reality

and transfer securities from one to another. Furthermore, the existing electronic payment systems,

typically controlled by central banks, play this role. As an example in Europe, consider the real

time gross settlement system TARGET2.

The way we model depositors is standard in the bank runs literature. In the Örst period, agents

deposit their endowment in their regionís bank, which can be withdrawn in an interim or in a

terminal period. There is a probability that a depositor is impatient, in which case she always

withdraws in the interim period; patient depositors can choose in which period to withdraw. In

the interim period, each depositor privately learns whether she is impatient or patient. Also, each

depositor receives a noisy private signal about the quality of her bankís long-run investment, based

on which she decides whether to withdraw or wait until the terminal period. Depositors in the

three regions decide simultaneously.

Withdrawing the deposit in the terminal period has a higher expected return than early with-

drawing, if the bank does not run out of resources in the interim period. A bank runs out of

resources, if total withdrawals in the interim period are higher than the liquidation value of its to-

tal long-run investment. Since we assume that deposit contracts follow a Örst-come-Örst-serve rule

and there is no deposit insurance, if the bank does not have enough resources in the interim period,

there is a run. In this situation, early withdrawers may receive a payment, while late withdrawers

receive nothing.

If the quality of banksí investment is observable, there are two equilibria, everyone runs and no

one runs. If instead, the quality of banksí long-run investments is not observable and depositors re-

ceive noisy private signals about this quality, we show that equilibrium uniqueness is restored. This

result is standard in global games, but this approach typically assumes that signals are inÖnitely

precise, while we allow for some (but not any) imprecision in private signals. As in the standard

result, we Önd that depositors in the three banks follow a trigger strategy, that is, they withdraw

in the interim period if their signal is below a threshold.

We show that an interbank market, which redistributes reserves, and a central bank, which

determines banksí reserve requirements and coordinates their redistribution, leads to a smaller

probability of a bank run in all regions and to less ine¢cient bank runs, relative to the case with

no interbank market and no central bank. The mechanism behind this crucial result works through
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depositorsí beliefs, as follows.

The signal threshold for depositors is smaller if banks choose to participate in the interbank

market. Intuitively, by redistributing reserves from liquid to illiquid banks, the interbank market

provides banks with an insurance against the random interim demand of withdrawals. However,

because of imperfect information about the quality of banksí investments, the insurance that the

interbank market provides is incomplete. By adequately selecting the reserves to store and by

coordinating the redistribution, the central bank improves that insurance. Depositors react to this

double insurance by updating their propensity to run, which reinforces the former mechanism and

leads to a smaller probability of a run and to less ine¢cient bank runs.

One implication of this result is that the interbank marketís capacity to redistribute reserves

and to reduce the ex-ante probability of a bank run is decreasing in the degree of correlation of the

quality of banksí long run investments. In the extreme case, if banksí investments were of identical

quality, depositors would receive similar private signals,3 banks would have similar interim liquidity

demand and there would be no reserves to redistribute.

We then study the way the central bank selects the fraction of reserves that banks must store,

which in turn a§ects the interim payment that banks can a§ord to o§er to depositors, contingent

on participating in the interbank market.

We show that by adequately chosing the level of reserves to store, the central bank can improve

the equilibrium outcome and enable banks to o§er a higher interim payment to depositors, relative

to the situation with no cross deposits. Since depositors are risk averse, a deposit contract o§ering

a higher interim payment is ex-ante welfare improving to all agents.

We conclude that the constrained-e¢cient prudential regulation, in the form of reserve require-

ments, should not only consider the individual banksí transformation activities, but also the degree

of correlation of risk exposures and the quality of information available. More speciÖcally, when

choosing the reserves to store, the central bank should take into account the pattern of correlation,

the precision of private information and the term structure of interest rates. Failure to integrate

these elements undermines Önancial stability and increases the ex-ante probability of bank run.

There is an immense literature on banks and bank runs. Although it cannot be fully covered

here, in the following lines, we highlight two strands of this literature that are close to ours. See

Gorton and Winton (2003) for a complete survey.

Our main contribution is that, by introducing imperfect information about the quality of banksí

long-term investment, which can be correlated, we endogenously and uniquely determine the ex-

ante probability of a bank run, when banks participate in an interbank market and the central

bank determines the reserve requirements.

On the one hand, there is the literature that focuses on banksí liquidity provision and the

3Recall that we allow for some (but not any) imprecision in private signals.
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way banks insure themselves through cross deposits. With a mechanism design perspective, Bhat-

tacharya and Gale in 1986 show that banks, facing idiosyncratic liquidity shocks, have an incentive

ex-ante to set up an interbank market. However, its setting up creates a free rider problem, which

results in banks storing too few reserves and hence, a poor performance of the interbank market

ex-post. We share with them the view of the central bank as a coordination device. We depart from

them, because our goal is the endogenous determination of a unique probability of a bank run.

Allen and Gale in 1998 develop a model with an interbank market and a central bank, in which

the interbank market is e¢cient and the probability of a bank run is endogenous. In line with

them, our results show that the central bank can improve the equilibrium outcome. We depart

from them, because a bank run in their model is never panic based, as it is here.

More recently, Freixas and Holthausen (2005), Freixas and Jorge (2008) and Heider, Hoerova

and Holthausen (2008), among others, study the functioning of the interbank market, when it is

not optimal. In particular, Freixas and Jorge study the micro-foundations of the monetary policy

transmission mechanism, in the presence of interbank market imperfections. We share with them

the conclusion that imperfect information about banksí liquidity shocks a§ects the functioning of the

interbank market. We depart from them, because their aim is to study how Önancial imperfections

a§ect monetary policy.

On the other hand, there is the literature on monetary regulation. Because banksí maturity

transformation function exposes them to the risk of a bank run, this literature examines what is

the best monetary regulation, ex-ante and ex-post, to minimize the probability of a bank run and

importantly, the social costs associated to them. Fahri and Tirole (2011) and Freixas et al (2009)

are two important contributions examining these issues.

We depart from this literature because our goal is not to characterize the optimal regulation,

from a mechanism design perspective, but to study how an existing mechanism, that is, the manda-

tory reserve requirement determined by the central bank, a§ect depositorsí propensity to rush and

the ex-ante probability of a bank run, in the context of informational problems, correlation of

investments and interbank market.

As an illustration, the reserve requirements considered here are, to some extent, closed to

Kashyap, Rajan and Steinís (2008), who propose to mandate banks to store reserves, in the form

of U.S. Treasury bonds, instead of cash as we do.

The paper proceeds as follows. Section two presents the model and discusses its main features.

Section three studies the problem of depositors at the interim period. Section four analyses the

problem of banks and that of the central bank, at the initial period. Concluding remarks are in

section Öve. All proofs are relegated to the Appendix.

5



2 The economy

This section displays the setup of the model. Consider an economy with three periods, t = 0; 1; 2

and three regions, j = A;B;C. Each region is populated by a continuum of competitive banks,

each with a continuum of agents. Agents are indexed by i 2 [0; 1] with total measure one. Also,

there is a central bank, common to all regions.

Productive technology. At t = 0, agents and banks in each region can invest in a productive

technology. The technology at each region yields a gross return R > 1 with probability p(ej) or
0 with probability 1  p(ej) at t = 2. If liquidated early, the gross return equals to one. The

fundamental ej is a random variable drawn at t = 1 but publicly observable at t = 2. The

probability p(:) is strictly increasing in j , with Ej [p(j)]R > 1.

Alternatively, agents and banks in each region have access to a storage technology at t = 0,

which yields a gross return of 1 at t = 1; 2.

Correlation of fundamentals across regions. At the beginning of t = 1, a random variable
e is drawn from a uniform distribution with support [0; 1]. Also at t = 1, nature draws the

fundamental state variable h  f0; 1g : Independent or identical fundamentals, respectively. If

h = 1; with probability q; fundamentals in the three regions are identical to the realized , namely,

A = B = C = . If h = 0, with probability 1 q; each ej is independently drawn from another

uniform distribution with support [0; 1].  and j are only publicly observable at t = 2; h is publicly

observed at t = 1. In brief,

ej =
(
 if h = 1,

 U [0; 1] if h = 0:
(1)

This speciÖcation allows us to model the correlation of fundamentals across regions, keeping the

unconditional distributions identical for A; B and C .

Agents. Agents consume a single good, which is divisible and storable. All agents are identical

at t = 0 when they receive one unit of the consumption good as endowment. Agentsí utility is

U (c1 + ic2) ;

where fc1; c2g denote consumption at t = 1 and t = 2. U () is continuous, twice di§erentiable,

increasing and has a relative risk aversion coe¢cient greater than one.

At t = 0, agents can either invest in the productive technology or deposit their endowment in

the bank of the region they live in.

At the beginning of t = 1, nature draws agentsís type: impatient (i = 0 with a probability )

or patient (i = 1 with probability 1  ). Agentsí types are private information. Also at t = 1,
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agent i in region j observes an imperfect private signal

exij = j + e"ij (2)

about the fundamental in her region j , where the noise e"ij has uniform distribution in ["; "]

with 0 < " < 1
4
4. With this information, agent decides whether to liquidate her investment in the

productive technology or withdraw her deposit from bank j at t = 1. Furthermore, assume that

the expected utility from consuming at t = 2 is higher than from consuming at t = 1; that is,

Ej [p(j)] U(R) > U(1); (3)

with R > 1
 .
5

Banks. Each region has a banking sector, with free entry. Since banks are ex-ante identical,

make no proÖts and have access to the productive technology, they o§er the same deposit contract

that would be o§ered by a single regional bank that maximizes the welfare of agents. We denote

the representative regional bank as A; B and C; respectively. Importantly, banks can cross deposit

in a complete interbank market, as depicted in the next Ögure.

Figure 1. Complete interbank market structure.

At t = 0; bank j must Örst decide whether to participate in the interbank market at t = 1. If

bank j chooses to participate, it must store at least y 2 [; 1] as reserves, to be held in the central

bank from t = 0 to t = 1, with y centrally determined, the same for all banks and publicly known.

It invests the remaining Djy in the productive technology, with Dj 2 [0; 1] total deposits received

by bank j at t = 0. If instead bank j chooses not to participate, mandatory reserves are 0 bank j

can invest all deposits. This choice is public information.6

At t = 0, bank j o§ers the following demand deposit contract to all agents willing to deposit

their endowment in the bank. An agent demanding withdrawal at t = 1 is promised a Öxed payment

of r1 > 1. If she waits until t = 2 , she receives a stochastic return of r2j , which is the net proceed

of the productive investment, divided by the total withdrawals at t = 2, for j = A;B;C.

4To be explained later.
5R > 1


introduces a lower bound on fundamentals.

6 If choosing to participate, a bank will never store more than y from t = 0 to t = 1, because, Örst, the productive

technology does as well as the storage technology if liquidating at t = 1 and even better in expected value if waiting

until t = 2. Second, because there is no cost of early liquidation.

See forthcoming description of the central bank.
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At t = 1, bank j must follow a sequential service constraint, that is, it pays r1 until it runs out

of resources and becomes bankrupt. Denoting nj the proportion of agents in bank j withdrawing

at t = 1, the deposit contract pays according to Table 1.7

Table 1: Deposit contract payments.

Withdrawal If enough resources at t = 1 If not enough resources at t = 1

t = 1 r1 r1 with probability
Dj
njr1

8

0 with probability 1 Dj
njr1

t = 2 r2j 0

The central bank. Its role is to coordinate the storage of reserves. At t = 0, the central

bank determines y, collects the reserves and invests them in the productive technology. At t = 1,

under some to-be determined conditions, it helps re-allocating the reserves between banks.9

The interbank market. Its role is to redistribute at t = 1 the reserves stored by banks at

t = 0.

We deÖne zlj 2 R and z
b
j 2 R as the amount bank j lends and borrows in the interbank market

at t = 1, respectively; fj  zbj  z
l
j is the interbank net position. After observing h, nj and nj0 ,

with j0 6= j, cross deposits settle at t = 1; according to table 2.

Table 2: Market clearing rules and cross deposit settlements at t = 1.

t = 1 Scenario

h = 0 Cross deposits

No bankrupt and njr1  y zlj 2 [0; y  njr1]

enough reserves zbj = 0

No bankrupt but y < njr1 < Dj zbj 2 [0; njr1  y]

not enough reserves zlj = 0

Bankrupt njr1  Dj zlj = z
b
j = 0

If h = 1, regardless of nj , zlj = z
b
j = 0:

7Banksí payo§s are to be determined, when describing the interbank market.
8 The probability that an agent willing to withdraw at t = 1 receives the promised r1 if the bank is bankrupt, ,

solves:

nj  r1   = 1Dj ;

with 1Dj the liquidation value of total deposits.
9As Battacharya and Gale (1986) have shown, although banks have an incentive ex ante to set up an interbank

market, its setting up creates a free rider problem, which results in banks storing too few reserves and hence, a poor

performance of the interbank market ex post. This motivates our modeling of the central bank, as a coordination

device.
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At t = 1, bank j can Önd itself in one of the three situations depicted in the previous table.

Bank j is not bankrupt (it has enough resources at t = 1), whenever total t = 1 withdrawal njr1

is smaller than the total liquidation value of deposits at t = 1; that is, 1  Dj . Bank j is not

bankrupt and has enough reserves, if it can pay r1 to the proportion nj willing to early withdraw

by only using reserves y. Bank j is not bankrupt but it does not have enough reserves, if it can pay

nj  r1 by using not only y, but also cross deposits and/or partial liquidation. Finally, bank j is

bankrupt at t = 1 if njr1 is higher than 1Dj . If bankrupt, bank j fully liquidates the productive

investment.

Whenever y < njr1 < Dj , the way bank j serves njr1 at t = 1 depends on the realized

fundamental state variable, h. If h = 1, since zlj = z
b
j = 0, bank j needs to liquidate njr1  y. If

instead h = 0 and reserves are not enough, bank j can borrow in the interbank market. Bank jís

budget constraint at t = 1 if h = 0 becomes,

njr1 = y + fj : (4)

At t = 2, if not bankrupt at t = 1, the non-liquidated productive investment pays o§. Bank j

pays the stochastic return r2j to retail deposits withdrawn at t = 2 and a random payment to cross

deposits. Importantly, cross deposits yield a gross interbank return Rf with probability p(j) or

0 with probability 1 p(j), with 1 < Rf < R. Bank j0s budget constraint at t = 2; provided not

bankruptcy at t = 1; becomes,

(1 nj)r2j =

(
(1 y)R fj Rf with probability p(j);

0 with probability 1 p(j):
(5)

Timing. Figure 2: Order of events.

t=0

Central bank Bank j chooses Depositor i in j Bank j collects deposits; Central bank

selects y: whether to participate; decides whether it stores y or 0; collects and

it o§ers r1 to depositors. to deposit or not. it invests 1 y or 1. invests y.

t=1 t=2

j is realized Depositor i in j Cross deposits j is publicly Investment,

but not publ. decides whether settle. observed. retail and

observed. to withdraw or cross deposits

wait. pay o§.

3 The problem of depositors at t = 1

Section 3 treats the deposit contract as exogenous and y and r1 as parameters. It solves for the

equilibrium at t = 1; contingent on whether bank j chooses to participate in the interbank market
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at t = 0 or not. If bank j chooses not to cross deposit, the solution is identical to Goldstein and

Pauzner (2005), except for the fact that we assume a non negative signal noise " > 0, instead of

"! 0.

3.1 No cross deposits

Let the subindex NC denote no cross deposits. We start with the conjectures that r1 2
h
1; 1

i
and

that all agents deposit their endowment in the bank of the region they live in at t = 0, that is,

Dj = 1. In addition, we conjecture that patient agents follow an unique monotone strategy, xNC :

DeÖnition 1. A monotone strategy xNC is such that a patient depositor with signal xij withdraws

her deposit at t = 1 when xij  xNC . Otherwise, she withdraws at t = 2.

Denoting nj as the total proportion of depositors who withdraw at t = 1 for each possible

realization of j , the t = 2 stochastic return, provided solvency at t = 1 is,

rNC2j =

(
1njr1
1nj R with probability p(j);

0 with probability 1 p(j):
(6)

with fj = 0. The di§erence in utility of a patient agent from withdrawing at t = 2 rather than at

t = 1 is,

v(j ; nj) =

8
<

:
p(j)U


1njr1
1nj R


 U(r1) if   nj < 1

r1
;

0 1
njr1

U(r1) if 1
r1
 nj  1:

(7)

If   nj < 1
r1
(Örst line in (7)), the proportion nj of agents who early withdraw is lower than the

maximum proportion the bank can serve at t = 1 without going bankrupt, 1
r1
. A patient agent

receives a random return if waiting (Örst term) or the promised r1 if early withdrawing. Instead,

if 1
r1
 nj  1 (second line), the bank is bankrupt. A patient agent who waits until t = 2 receives

nothing, while if withdrawing at t = 1 she may receive the promised r1 with probability 1
nr1
.

Let n(j ; xNC(r1)) be the total proportion of withdrawals at t = 1 for each possible realization

of j . Given r1, the process of signals xij in (2) and deÖnition 1, n(j ; xNC(r1)) is deterministic.

It is given by,

n(j ; x

NC(r1)) = + (1 ) Pr(xij < x


NC(r1)):

When fundamentals j are su¢ciently bad, that is, below xNC(r1)  ", all agents observe signals

below xNC(r1) and prefer to early withdraw. The proportion n(j ; x

NC(r1)) is thus equal to 1.

Instead, when j are above xNC(r1) + ", all agents observe signals above x

NC(r1) and only impa-

tient agents early withdraw, n(j ; xNC(r1) =  . Because fundamentals and noise are uniformly

distributed, n(j ; xNC(r1)) decreases linearly between x

NC(r1) " and x


NC(r1) + ". We thus have

n(j ; x

NC(r1)) =

8
>><

>>:

1 if j < xNC(r1) ";

+ (1 )(12 +
xNC(r1)j

2" ) if j 2 [xNC(r1) "; x

NC(r1) + "] ;

 j > x

NC(r1) + ":

(8)
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As in Goldstein and Pauzner (2005), we assume there are ranges of extremely good or extremely

bad fundamentals, in which a patient agentís best action does not depend on her beliefs about other

patient agentsí behavior. They are deÖned by the lower and upper dominant bounds, NC(r1) and

, respectively.

When j 2 [0; NC(r1)), the ´ lower dominance range ª, fundamentals are so low that the

expected utility from waiting until t = 2 is lower than that from withdrawing at t = 1, even if all

patient agents were to wait. Because the di§erence between xij and the true j is no more than

", a patient agent observing a signal xij < NC(r1)  " is sure that j 2 [0; NC(r1)). Hence, she

prefers to withdraw at t = 1, no matter her beliefs about what other agents do.

We compute NC(r1) as the value of j at which an agent is indi§erent between r1 and the

random return if waiting, that is, U(r1) = p(NC)U

1r1
1 R


. For any r1  1, we assume there are

feasible values of j for which agents are sure that j belongs to the lower dominance region. Since

the support of j is [0; 1], NC(r1) is increasing in r1 and r1  1, the condition that guarantees the

former is that the lower bound at r1 = 1 be NC(1) > 2", or equivalently, NC(1) = p
1

U(1)
U(R)


> 2"

at r1 = 1:

For the upper dominance range, we follow Goldstein and Pauzner (2005), by modifying the gross

return that the productive technology yields for an investment taken at t = 0 and liquidated at

t = 1. Over the interval (; 1]; the technology now yields a certain gross return equal to R (instead

of 1 in the range [0; ]). Because over this interval, an agent who demands early withdrawal receives

r1, whereas an agent who waits until t = 2 receives
Rnjr1
1nj > r1, all patient agents prefer to wait

until t = 2. Since the support of j is [0; 1], we assume  < 1 2".

An agent observing xij has an uniform posterior distribution about j in [xij  "; xij + "].

Hence, deÖnition 1, equations (8) and (7) and the posterior distribution of j yield the expected

utility di§erential of withdrawing at t = 2 instead of t = 1,

4r1(xij ; x

NC) =

1

2"

Z xij+"

xij"
v(j ; n(j ; x


NC))d: (9)

The equilibrium in monotone strategies is obtained by solving the indi§erence condition for the

marginal patient depositor who withdraws at t = 1, that is,

4r1(xNC ; x

NC) = 0: (10)

Lemma 1. There is an unique equilibrium in monotone strategies xNC(r1) that solves (10). A

patient depositor with signal xij withdraws at t = 1 if xij  xNC(r1); otherwise, she withdraws at

t = 2.

Lemma 1 says that a patient agentís action is uniquely determined by her signal: She demands

early withdrawal if and only if her signal is below the threshold. This result follows from the

uniform distribution of fundamentals and noise in signals, j and "ij , together with the existence
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of a lower and upper dominance range and 0 < " < 1
4 .
10

If j were observable (" = 0), two equilibria would exist, as in Diamond and Dybvig (1983).

One is a ´ no run ª equilibrium, when only impatient agents withdraw at t = 1, so n = ,

and all withdrawers receive r1. The other one is a ´ run ª equilibrium, when all impatient and

patient agents withdraw at t = 1 and receive r1 with probability 1
r1
. As usual in global games, the

introduction of signals with an arbitrary small noise allow to recover equilibrium uniqueness.

Importantly,

Lemma 2. The signal threshold xNC(r1) is increasing in r1.

When r1 is larger, patient agents run in a larger set of signals. Hence, banks become more

vulnerable to bank runs when they o§er more risk sharing (higher r1). The intuition is simple. If

the t = 1 payment increases and the t = 2 payment decreases, the incentive of patient agents to

early withdraw is also higher.

We deÖne NC(r1) as the level of j at which the total proportion of early withdrawals,

n(NC ; x

NC(r1)), equals the maximum proportion bank j can serve at t = 1 without going bank-

rupt, 1
r1
. Since j is uniformly distributed in [0; 1], NC(r1) is also the probability of a bank

run,

NC(r1) = x

NC(r1) + "


1 2

1 r1
(1 )r1


: (11)

NC(r1) depends on the signal threshold x

NC(r1), the payment that the deposit contract prescribes

for withdrawers at t = 1, r1, and the boundaries of the support of the signal noise ":

First, when the noise is collapsed to zero, "! 0, the probability of a bank run NC(r1) coincides

with the threshold xNC(r1). Second, x

NC(r1) does not have closed form solution unless the utility

function and the process for p(j) are speciÖed. Third, whether the probability NC(r1) is smaller

or higher than xNC(r1) depends on the last term in (11), which goes from " if r1 ! 1 to " if

r1 ! 1
 . Last but not least, Lemma 2 and deÖnition (11) imply that,

Lemma 3. The probability NC(r1) is increasing in r1.

Bank j can only achieve more risk sharing, at the cost of a higher probability of a bank run.

When r1 increases, the expected payment of withdrawing at t = 2 decreases for any realization of

j , so incentives to run are higher. This incentive is further increased since, knowing that other

agents are more likely to early withdraw, the agent assigns a higher probability to the event of

bank run. The probability of a run then increases.

3.2 Cross deposits

Suppose now that banks choose to participate at t = 0 in the interbank market, with index CD.

We make the same conjectures that in the previous section.
10The assumption 0 < " < 1

4
guarantees that 0 <  <  < 1:
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The solution of the equilibrium at t = 1 with cross deposits follows exactly the same steps as

in section 3.1. The monotone strategy xCD is deÖned in accordance to deÖnition 1, after replacing

xNC by x

CD: Provided no bankruptcy at t = 1, the t = 2 stochastic return r

CD
2j with cross deposits

becomes,

rCD2j =

8
>><

>>:

1njr1
1nj R with probability p(j) q;

1y
1njR+

ynjr1
1nj Rf with probability p(j) (1 q);

0 with probability 1 p(j):

(12)

With probability q, fundamentals are identical (Örst line in (12)). Since the proportion nj is the

same in all regions, the interbank market is ine§ective to redistribute reserves at t = 1. The

random return if waiting until t = 2 equals the one a patient agent would receive if no cross

deposits, with probability p(j).11 With probability 1  q, fundamentals are independent (second

line). The random return if waiting until t = 2 is now the return of the productive investment (Örst

term) net of payments to cross deposits (second term).12 Finally, with probability 1  p(j) (last

line), the productive investment and the retail deposit if waiting pay o§ 0.

The functional form of the di§erence in utility for a patient depositor of withdrawing at t = 2

instead of t = 1 turns out to,

v(j ; nj) =

8
<

:
p(j)

h
qU

1njr1
1nj R


+ (1 q)U


1y
1njR+

ynjr1
1nj Rf

i
 U(r1) if   nj < 1

r1
;

0 1
njr1

U(r1) if 1
r1
 nj  1:

(13)

The only di§erence between (13) and (7) is the random return a patient agent receives if waiting

until t = 2 if the bank is not bankrupt at t = 1. This return is now contingent on identical (with

probability q) or independent fundamentals (probability 1  q) (Örst and second term in Örst line

in (13), respectively). (13) and (7) share the contingent interim payment, which equals r1 if the

bank is not bankrupt or r1 with probability 1
njr1

if bankrupt.

The total proportion of agents who withdraw at t = 1 from bank j at each possible realization

of j is still governed by equation (8),13 while the expected utility di§erential of withdrawing at

t = 2 instead of t = 1 is still governed by equation (9), after replacing (7) by (13) and xNC by x

CD.

We need to modify the lower dominant bound with an interbank market, which now be-

11 If h = 1 and njr1 < y (no bankrupt and enough reserves), bank j keeps the excess of liquidity y  njr1 in

its central bank account. At t = 2, total productive investment (including the excess of reserves) yields (1  y)R

+(y  njr1)R = (1 njr1)R with probability p(j) or 0 otherwise.

If h = 1 and y < njr1 < 1 (no bankrupt but no enough reserves), bank j uses y and liquidates njr1  y to serve

t = 1 total withdrawals. At t = 2, total productive invesment yields (1  y)R (njr1  y)R = (1  njr1)R, with

probability p(j) ((njr1  y)R is the forgone interest).
12By plugging the t = 1 constraint (4) into the t = 2 budget constraint (5), the expression holds.
13Since the unconditional distributions for A; B and C and the supports of their conditional distributions are

identical and because of a common xCD, agents share uniform beliefs about the proportion of agents who run for any

j . See the appendix.
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comes CD(r1). The value of j at which a patient agent becomes indi§erent with an inter-

bank market, CD(r1), is U(r1) = p(CD)

qU

1r1
1 R


+ (1 q)U


1y
1R+

yr1
1 Rf


. For

any r1  1, the condition that guarantees that there are feasible values of j for which agents

are sure that j belongs to the lower dominance region is CD(1) > 2", or equivalently, CD(1) =

p1

 
U(1)

qU(R)+(1q)U

1y
1R+

y
1Rf



!
> 2".

The equilibrium monotone strategy xCD satisÖes,

4r1(xCD; x

CD) = 0: (14)

Proposition 1. There is an unique equilibrium in monotone strategies xCD(r1) that solves (14).

A patient depositor with signal xij withdraws at t = 1 if xij  xCD(r1); otherwise, she withdraws

at t = 2.

Let y  r1 be the level of reserves, below which they are insu¢cient to serve the minimum

possible t = 1 liquidity demand, r1. In the other extreme, let y 
12r21
2(1r1)

be the level of reserves

above which the expected return if waiting until t = 2 with cross deposits is smaller than the

expected t = 2 return without cross deposits.14 The next corollary compares the two threshold

strategies xNC(r1) and x

CD(r1).

Proposition 2. Assume y < y < y, q < 1 and 1 < Rf < r1 < R. The equilibrium in monotone

strategies xCD(r1) satisÖes

xCD(r1) < x

NC(r1):

This is the main result of the section. Intuitively, because the interbank market allows banks to

redistribute at t = 1 the reserves stored at t = 0 through cross deposits, the range of fundamentals

over which bank j is bankrupt at t = 1 shrinks.15 Hence, depositors update their beliefs and,

provided the policy variables satisfy certain conditions, depositors reduce the signal threshold

below which they withdraw at t = 1. In other words, cross deposits act as an insurance, against

the liquidity risk.

The Örst condition of Proposition 2, y < y < y, guarantees that the interbank is e§ective to

redistribute reserves at t = 1 and that depositors are at least indi§erent between banks participating

in the interbank market at t = 0 or not. The second condition, 1 < Rf < R; entails the following

liquidation pecking order, given t = 1 withdrawals: First, reserves, then cross deposits and Önally,

long-term investment. Also,

Corollary 1. The signal threshold xCD(r1) is increasing in r1.

Since j continues to be uniformly distributed in [0; 1]; the probability of a run in bank j with

interbank markets is

CD(r1) = x

CD(r1) + "


1 2

1 r1
(1 )r1


; (15)

14See the appendix for details.
15This is always true given the timing, the market clearing rules and assumptions on Rf and R.
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with CD(r1) the level of j below which bank j becomes bankrupt at t = 1, which is increasing in r1.

Proposition 2 and equation (15) imply that, under the same conditions, the bank run probabilities

satisfy,

0 < CD(r1) < 

NC(r1) < 1: (16)

The interbank market reduces the ex-ante probability of a bank run in all regions. The mechanism

follows. Because by shuing liquidity through the interbank market, cross deposits provide banks

a bu§er to serve the t = 1 demand of withdrawals, depositors update their beliefs and reduce their

incentives to run, xCD(r1), which in turn reinforces the former and leads to a smaller probability

of a run.

Importantly, the interbank market provides an insurance to banks against the random liquidity

demand they face at t = 1. However, this insurance is incomplete. By determining the level of

reserves to store at t = 0 and by coordinating their redistribution at t = 1, the central bank

improves this insurance.

The extent to which NC(r1) and 

CD(r1) di§er depends on how noisy the signals that depositors

receive about the quality of their bankí investment are and how probable it is that the quality of

banksí investments is identical. The noise of signals is governed by the parameter ", while the

probability of identical quality is governed by q. The next corollary studies the link between the

probabilities CD(r1), 

NC(r1) and q:

Corollary 2. Assume y < y < y and 1 < Rf < r1 < R. If q = 1, CD(r1) = 

NC(r1). Otherwise,

CD(r1) is increasing in q.

Interestingly, as illustrated in Ögure 3, the interbank marketís capacity to redistribute reserves

and to reduce the ex-ante probability of a run is decreasing in q. This is because when fundamentals

are identical, which occurs with probability q, banks have the same t = 1 liquidity demand and

there are no reserves to redistribute.

Figure 3: Probabilities of a run CD(r1) and 

NC(r1), as function of q:

To conclude, we compare the ex-ante probabilities of a bank run, with and without cross

deposits, with the lower bound on fundamentals.

We deÖne the size of the ´ panic based ine¢ciency ª as the range of fundamentals where

ine¢cient panic based bank runs occur, above the lower bound on fundamentals. Note that only
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when fundamentals j are below the lower bound, CD(r1) or NC(r1), it is e¢cient for the bank to

early liquidate the long term investment. The size of the panic based ine¢ciency equals jCD(r1)

CD(r1)j if banks choose to participate in the interbank market, while it equals j

NC(r1)NC(r1)j

if choosing not to participate. Interestingly,

jCD(r1) CD(r1)j < j

NC(r1) NC(r1)j:16 (17)

The range of fundamentals of ine¢cient panic based bank runs shrinks with an interbank

market. Intuitively, the interbank market allows banks to insure themselves against the random

liquidity demand they face at t = 1. The central bank improves this insurance, by coordinating

the storage of reserves at t = 0 and their redistribution at t = 1. The combination of these two

e§ects reduces the panic based ine¢ciency. Importantly, provided the economy parameters satisfy

certain conditions, public intervention improves the equilibrium outcome.

4 Demand deposit contract and monetary regulation

Section 4 lets the deposit contract o§ered by banks A; B and C to depositors at t = 0 and the

policy variable y to be endogenous.

First, for benchmarking, Section 4 brieáy revisits results from Diamond and Dibvig (1983)

regarding the equilibrium outcome under autarky and Örst-best contracts. Second, it examines the

way banks determine the equilibrium interim payment to o§er to depositors, contingent on choosing

not to or to cross deposit at t = 0. Recall that if bank j chooses not to cross deposit, the solution is

identical to Goldstein and Pauzner (2005). Third, it studies banksí optimal choice between storage

and investment ex-ante, which is summarized in their choice to participate in the interbank market.

Finally, it studies how the selection of y ináuences banksí and depositorsí decisions.

Banks and central bank Banks face two types of risk. On the one hand, banks face a

liquidity risk, deÖned as uncertainty about t = 1 liquidity demand, due to private information

on agentsí types. On the other hand, they are exposed to aggregate uncertainty, due to private

information about j .

The central bank has two tools to help banks manage these risks and avoid bank runs.17 The

Örst tool is ex-ante prudential regulation, as given by the selection of y. The second tool is the

coordination of the liquidity redistribution, ex-post.

The central bank selects the socially optimal level of y to maximize the ex-ante expected utility

of a representative depositor. Importantly, because authority and banks have the same information

16See the appendix for a derivation.
17 In reality, central authorities have a much richer menu of tools. See Kashyap, Stein and Rajan (2008) for a

complete survey and Fahri and Tirole (2011) for a careful analysis.
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and have access to the same productive technology at t = 0, banks are ex-ante identical, they make

no proÖts and there are no externalities among banks,18 the central bank pins down y and relies on

banks to determine at t = 0, the equilibrium interim payment and to reveal at t = 1, their interim

liquidity demand.

4.1 Autarky and First Best Solution

Since agents are risk averse, a transfer of consumption from patient to impatient agents is ex-ante

beneÖcial to all agents. If types were observable, it would be possible to implement a contract that

optimally shares risk between patient and impatient agents.

Lemma 4. (Optimal risk sharing) The Örst best allocation in the economy would be as follows. At

t = 0, all agents invest in the productive technology. At t = 1, impatient agents receive cFB1 > 1 and

consume it. Patient agents receive nothing. At t = 2, patient agents receive cFB2 =
1cFB1
1 R < R

with probability p(j) and 0 with probability 1 p(j):

When agentsí types are not public information, this insurance contract contingent on types is

not possible. In what follows, we study how banks can increase welfare relative to the autarkic

situation.

4.2 The problem of banks at t = 0

Let the contingent interim payment o§ered by bank j to depositors, contingent on choosing not to

or to cross deposit at t = 0 be rNC1 and rCD1 , respectively.

4.2.1 No cross deposits

Bank j determines rNC1 so as to maximize the (to be deÖned) ex-ante conditional expected utility

of a representative depositor who is promised rNC1 if early withdrawing. The conditional expected

utility depends on the payments under all possible values of j . Since j 2 [0; 1] is unknown at

t = 0, there are four intervals of j to consider, as depicted in the next table.

Figure 4: Run and no run and the proportion of n(j ; xNC(r
NC
1 )), as a function of j . No cross

deposits.

j

0; NC(r

NC
1 )

 
NC(r

NC
1 ); xNC(r

NC
1 ) + "

 
xNC(r

NC
1 ) + "; 

 
; 1


n(j ; x

NC(r

NC
1 )) 1 2 [; 1

rNC1
)  

Outcome in j Run No Run No Run No Run

18Because agents can only deposit in the bank of the region they live in, the contract that one bank can o§er to

its depositors does not a§ect the payo§s of an agent who deposits in another bank.
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When j 2 [0; NC(rNC1 )] (Örst interval), the bank liquidates all its investments at t = 1 and

depositors of both types receive rNC1 with probability 1
rNC1

: When j 2 (NC(rNC1 ); xNC(r
NC
1 ) + "]

(second interval), the proportion n(j ; xNC(r
NC
1 )) of depositors who withdraw at t = 1 receive

rNC1 , while 1  n(j ; xNC(r
NC
1 )) of patient depositors who wait until t = 2 receive 1njrNC1

1nj R

with probability p(j) or 0 otherwise. When j 2 (xNC(r
NC
1 ) + "; ] (third interval), all patient

depositors wait until t = 2 and receive 1rNC1
1 R with probability p(j). Finally, when j 2 ( ; 1]

(last one), all patient depositors waiting until t = 2 always receive RrNC1
1 .

The conditional expected utility of a representative depositor who is promised rNC1 , conditional

on bank j choosing not to cross deposit is

NC = max
rNC1

8
>>>>>><

>>>>>>:

R NC(rNC1 )
0

1
rNC1

U(rNC1 )dj

+
R xNC(rNC1 )+"

NC(r
NC
1 )


njU(r

NC
1 ) + (1 nj)p(j)U


1njrNC1
1nj R


dj

+
R 
xNC(r

NC
1 )+"


U(rNC1 ) + (1 )p(j)U


1rNC1
1 R


dj

+
R 1



U(rNC1 ) + (1 )


U

RrNC1
1


dj

9
>>>>>>=

>>>>>>;

; (18)

with each line corresponding to one interval in Figure 4 and nj abbreviating for n(j ; xNC(r
NC
1 )).

The next proposition shows that, provided the lower dominance range j 2 [0; NC(1)] is not

too large, the demand deposit contract o§ered by bank j; which is summarized in rNC1 , satisÖes,

Lemma 5. If choosing not to cross deposit, the equilibrium interim payment that bank j o§ers to

depositors, rNC1 , satisÖes

1 < rNC1 < cFB1 :

The demand deposit contract is socially desirable, even when the cost of bank run is considered.

Because of the high coe¢cient of risk aversion, the deposit contract with rNC1 > 1 achieves higher

welfare than that reached under autarky. However, the interim payment rNC1 is still inferior to the

Örst best allocation, cFB1 . This is because bank j needs to consider the e§ect that an increase of

rNC1 has on the probability of a run, when agentsí types are not known.

Increasing rNC1 above 1 has some beneÖts, but also some costs. It is beneÖcial since it enables

risk sharing among agents. However, it is also costly because of two e§ects. First, it widens the

range in which bank runs occur and the investment is liquidated slightly beyond NC(1). Second,

in the range [0; NC(1)); it makes runs more costly. This is because setting r
NC
1 above 1 causes

some agents not to get any payment (due to the sequential service constraint). Provided the range

[0; NC(1)] is not too large, the net e§ect is positive and the deposit contract is welfare improving.

Importantly, ine¢cient, panic based bank runs occur in equilibrium. This is seen by noting

that NC(r
NC
1 ) is larger than NC(r

NC
1 ) whenever rNC1 is above 1.

18



4.2.2 Cross deposits

The decision to cross deposit does not a§ect the way banks determine the interim payment o§ered

to depositors. As illustrated in Figure 5, the program to solve with cross deposits shares with (18)

the four intervals of j to consider and the proportion of agents who withdraw at t = 1 in each

interval, which now equals n(j ; xCD(r1)).

Figure 5: Run and no run as a function of j , with cross deposits.

j

0; NC(r

NC
1 )

 
NC(r

NC
1 ); xNC(r

NC
1 ) + "

 
xNC(r

NC
1 ) + "; 

 
; 1


n(j ; x

NC(r

NC
1 )) 1 2 [; 1

rNC1
)  

Outcome in j Run No Run No Run No Run

The only di§erence with program (18) is the random return if waiting until t = 2, which is

now contingent on whether fundamentals are identical, with probability q, or independent, with

probability 1  q. Consider the possible values that the t = 2 random return can take. When

j 2 ( CD(rCD1 ); xCD(r
CD
1 ) + "]; the proportion 1  n(j ; xCD(r

CD
1 )) of patient depositors who

wait until t = 2 receive 1njr
CD
1

1nj R with probability p(j)q or 1y
1njR+

ynjrCD1
1nj Rf with probability

p(j) (1 q) or 0 otherwise. When j 2 (xCD(r
CD
1 )+ "; ], all patient depositors wait until t = 2

and receive 1r
CD
1

1 R with probability p(j)q or 1y1R+
yrCD1
1 Rf with probability p(j)(1q)

or 0 otherwise. Finally, when j 2 (; 1], all patient depositors always receive a positive t = 2 return,

which equalsRr
CD
1

1 with probability q or Ry1 +
yrCD1
1 Rf with probability (1 q).

The ex-ante conditional expected utility of a representative depositor in bank j with cross

deposits, CD, is now


CD

= max
rCD1

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

R CD(rCD1 )

0
1

rCD1

U(rCD1 )dj

+
R xCD(rCD1 )+"


CD

(rCD1 )

 
njU(r

CD
1 ) + (1 nj)p(j)

 
qU

 
1njr

CD
1

1nj
R

!
+ (1 q)U

 
1y
1nj

R +
ynjr

CD
1

1nj
Rf

!!!
dj

+
R 
x
CD

(rCD1 )+"

 
U(rCD1 ) + (1 )p(j)

 
qU

 
1rCD1

1 R

!
+ (1 q)U

 
1y
1R +

yrCD1
1 Rf

!!!
dj

+
R 1


 
U(rCD1 ) + (1 )

 
qU

 
RrCD1

1

!
+ (1 q)U

 
Ry
1 +

yrCD1
1 Rf

!!!
dj

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

(19)

If choosing to cross deposit, the interim payment that bank j o§ers to depositors at t = 0

depends on y.

Proposition 3. Provided CD(1) is not too large and y < y < y, the equilibrium interim payment

that bank j o§ers to depositors if choosing to cross deposit, rCD1 , satisÖes,

1 < rCD1 < cFB1 :

Proposition 3 shows that the demand deposit contract with cross deposits achieves higher

welfare than that reached under autarky, but it is still inferior to the Örst best allocation, as it

generates ine¢cient, panic based bank runs. As before, this is because CD(r
CD
1 ) is larger than

the lower bound CD(r
CD
1 ), whenever rCD1 is above 1. Importantly, the market failure driving the
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ine¢ciency CD(r
CD
1 ) > CD(r

CD
1 ) is due to imperfect information, because neither agentsí types

nor the quality of banksí long-term investment are observed at t = 0.

Knowing that both demand deposit contracts achieve higher welfare than that reached under

autarky, two questions arise. First, when do banks choose to participate in the interbank market?

Second, how does the equilibrium interim payment with cross deposits compare to the interim

payment without cross deposits, that is, is rCD1 higher than rNC1 ? The next section answers these

questions.

4.2.3 Decision to participate and interim payment

First, we analyze the bank decision to participate in the interbank market.

Whether bank j chooses to participate in the interbank market at t = 0 depends on the reserves

to store, y. This is because the level of y modiÖes the marginal cost of better risk sharing, as

measured by CD(r
CD
1 ).

Lemma 6. Bank j chooses to participate in the interbank market at t = 0 if reserves are such that

CD(r
CD
1 )  NC(rNC1 ). Otherwise, bank j chooses not to participate:

Each bank trades o§ the insurance that cross deposits provide against the random interim

demand of withdrawals, with the foregone long-term return that a bank looses, when storing a

fraction of its deposits as reserves. Whenever this insurance leads to a lower probability of bank

run, relative to the situation with no cross deposits, the bank prefers to participate in the interbank

market.

Second, we compare interim payments rCD1 and rNC1 .

Proposition 4. Assume y < y < y, 1 < Rf < rNC1 < R and 1 < Rf < rCD1 < R. The equilibrium

interim payment that bank j o§ers to depositors, with or without cross deposits, rCD1 and rNC1 ,

respectively, satisfy

cFB1 > rCD1  rNC1 > 1:

Whenever by redistributing reserves, the interbank market reduces the ex-ante probability of a

run and thus, the marginal cost of better risk sharing, bank j can a§ord a higher interim payment

to depositors, resulting in rCD1  rNC1 > 1.

More generally, because of the nature of the problem, with agents trading with banks and banks

trading among themselves in the presence of imperfect information, ex-ante constrained-e¢ciency

could only be restored if an insurance mechanism to agents or banks would exist. This is precisely

the role of the interbank market, complemented by the central bank: Banks insure themselves

through cross deposits and the central bank improves the insurance. As a result, the equilibrium

interim payment rCD1 is closer to cFB1 (relative to the situation with no interbank market and no

central bank). Public intervention improves the equilibrium outcome.
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To conclude, we study how the interim payment changes with the probability q.

Corollary 3. Assume y < y < y, 1 < Rf < rNC1 < R and 1 < Rf < rCD1 < R. If q = 1,

rCD1 = rNC1 . Otherwise, rCD1 is decreasing in q.

Intuitively, if q = 1, fundamentals are identical and the interbank market is ine§ective to

redistribute reserves. The interim payment that bank j could o§er would then equal the interim

return with no cross deposits, that is, rCD1 = rNC1 . Instead, if q < 1, the interbank market can

redistribute reserves. However, its capacity is decreasing in q, since the probability of a bank run is

increasing in q. As illustrated in Figure 6, both elements combined imply that the interim payment

that bank j can a§ord with cross deposits is also decreasing in q.

Figure 6: Interim payments rNC1 and rCD1 , as function of q:

4.3 The problem of the central bank at t = 0

We study now the central bankís ex-ante prudential regulation, that is, how it pins down the level

y of reserves to store at t = 0.

The central bank selects y so as to maximize the ex-ante, unconditional expected utility of

representative depositor in bank j, who is promised rCD1 if early withdrawing, subject to

y < y < y: (20)

The problem to solve simpliÖes when taking into account the following elements. To start with,

the central bank faces no commitment problem or moral hazard problem about banks. Second,

banks are ex-ante identical, they determine the deposit contract simultaneously at t = 0 and, at

t = 1; they have no incentive to misreport their interim demand of withdrawal.19 Third, regardless

of its decision to cross deposit or not, bank j already determines the equilibrium interim payment,

so as to maximize the expected utility of a representative depositor. In particular, as reáected in

program (19), the equilibrium rCD1 depends on y. Finally, because the interbank market is socially

desirable, the central bank should select y, so as to encourage banks to prefer to participate in the

interbank market at t = 0.
19By reporting nj and because of equation (8), j becomes uniquely determined at t = 1.
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Assuming the economy parameters are such that an interior solution exists, the central bank

pins down y, such that,

NC(r
NC
1 ) = CD


rCD1


: (21)

The central bank selects y so as to allow banks choosing to cross deposit, to o§er the highest

possible interim payment to depositors at t = 0, given the ex-ante probability of a run with no

cross deposits, NC(r
NC
1 ).

We now explain why the central bank proceeds this way. First, recall that a bank chooses to

participate in the interbank market only if the probability of a bank run with cross deposits is not

greater than the likelihood of a bank run with no cross deposits. Second, because the probability

of a bank run is increasing in the interim payment, the likelihood of a bank run with no cross

deposits constrains the selection of reserves y and hence, the maximum interim payment rCD1 to

o§er. Finally, because agents are risk averse, this way of selecting the reserve requirement is ex-ante

welfare improving to all agents. Crucially, choosing y in this way implies that,

Corollary 4. The equilibrium interim payment that bank j o§ers to depositors with cross deposits,

rCD1 , satisfy

cFB1 > rCD1 > rNC1 > 1:

The central bank intervention improves the insurance that banks provide themselves through

cross deposits, leading to a lower probability of a bank run, and importantly, allowing banks to o§er

a higher interim payment, relative to the situation with no cross deposits, rCD1 > rNC1 . Because

of the high coe¢cient of risk aversion, the deposit contract with rCD1 > rNC1 > 1 improves welfare

with respect to autarky and relative to the situation with no interbank market.

More generally, while prudential supervision is traditionally concerned with the solvency of in-

dividual institutions, Corollary 4 stresses that ex-ante constrained-e¢cient prudential regulation,

in the form of reserve requirements, should not only consider the individual banksí transformation

activities, but also the degree of correlation of risk exposures and the quality of information avail-

able. Importantly, failure to integrate these elements undermines Önancial stability and increases

the ex-ante probability of bank run.
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5 Conclusion

This paper provides micro foundations for the interbank market role in allocating liquidity, which

is important to better understand how central banks should respond to liquidity shocks.

We show that the coexistence of an interbank market, which redistributes reserves, and a central

bank, which determines the reserve requirements and coordinates their redistribution, leads to a

smaller probability of a bank run in all regions and to less ine¢cient bank runs, relative to the case

with no interbank market. By adequately choosing the level of reserves to store, the central bank

can improve the equilibrium outcome.

We now discuss how to apply and extend our results.

One possible application is public policy analysis. Our model allows us to endogenously deter-

mine the probability of bank run, when the quality of banksí investments is correlated and banks

participate in an interbank market. This probability is key to assess the desirability of public

policies that attempt to avoid runs.

For example, during the 2007-2008 banking crisis, several episodes of bank runs (such as North-

ern Rock in the United Kingdom, in 2007 or IndyMac in the United States, in 2008) became sadly

famous. With the goal of promoting a more resilient banking sector, the Basel Committee on

Banking Supervision and the G20 launch in 2010-2011 a new banking regulation, known as Basel

III. Basel III introduces changes in capital requirements, together with new liquidity requirements

(the net stable funding ratio and the liquidity coverage ratio) in order to strengthen global capital

and liquidity regulations.

It could then be possible to apply our model to assess whether such policy measures are desirable

or specify under which conditions they can be. Indeed, our reserve requirements could, to some

extent, be interpreted as a simpliÖed Basel III liquidity coverage ratio.

The Örst venue of future research is to study how the introduction of a central bank facing a

moral hazard problem about banks a§ect banking panics.20 More precisely, the aim is to study how

this feature alters the way the central bank determines the reserves requirements, the way banks

determine the equilibrium interim payment they o§er to depositors and the probability of a bank

run.

The second venue is to increase the size of the interbank market to include a Önite number of

banks, higher than three. The goal is to generalize our results by allowing for di§erent architectures

of interbank market.
20Moral hazard refers to the tendency of an insured (the bank) to relax its e§ort to prevent the occurence of the

risk that it has been insured against, once it has shifted the risk to the insurance institution. In our context, once

depositors have deposited their cash, the bank may have incentives to take more risks and thereby, expropiate value

to depositors.
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6 Appendix. Proofs

6.1 DeÖnition of n(j; xNC(r1)) and n(j; x

CD(r1))

To compute the proportion n(j ; xNC(r1)) of agents who run early at each j , conditional on sharing

the same threshold xNC(r1), we split the interval of xij in three subintervals and we compute this

proportion for each of them.

Subinterval 1: xij > xNC(r1) + "

This situation is only possible if j > xNC(r1). Thus, no patient agent should demand early

withdrawal.

Subinterval 2: xij < xNC(r1) "

In this range, fundamentals are so low that all patient agent should early withdraw (because

it is always true that j < xNC(r1))

Subinterval 3: xij 2 [xNC(r1) "; x

NC(r1) + "]

This is the most interesting case. First, note that given j and ", the signal xij is uniformly

distributed over [j  "; j + "]:

Second, according to deÖnition 1, a patient agent runs when she observes a signal xij  xNC(r1):

Given r1, " and the threshold strategy xNC(r1), the proportion of agents early withdrawing at state

j , after observing the signal xij , is:

n(j ; x

NC(r1)) = + (1 )

Z xNC(r1)

j"

1

2"
dxij

n(j ; x

NC(r1)) = + (1 )(

1

2
+
xNC(r1) j

2"
)

Adding up, the proportion of agents that run at each j takes the following form:

n(j ; x

NC(r1)) =

8
>><

>>:

1 if j < xNC(r1) ";

+ (1 )(12 +
xNC(r1)j

2" ) if xNC(r1) "  j  x

NC(r1) + ";

 if j > xNC(r1) + ":

(22)

Concerning n(j ; xCD(r1)), since (a) the unconditional distributions for A; B and C and

the supports of their conditional distributions are identical; (b) agents share the same threshold

xCD(r1); (c) there are no externalities among banks and (d) the market clearing rules for the

interbank market, as deÖned in table 2.1, it is still true that with cross deposits,

Lemma 7. Agents share uniform beliefs about the proportion of agents who run at each j, which

becomes,

n(j ; x

CD(r1)) =

8
>><

>>:

1 if j < xCD(r1) ";

+ (1 )(12 +
xCD(r1)j

2" ) if xCD(r1) "  j  x

CD(r1) + ";

 if j > xCD(r1) + ":

(23)
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6.2 Proof of Lemma 1

6.2.1 Existence

We restrict attention to threshold strategies, according to deÖnition 1. We prove that there exists

at least one threshold strategy xNC such that 
r1(xNC ; x


NC) = 0 :

At xij = xNC(r1); the marginal depositor is indi§erent between withdrawing at t = 2 or t = 1.

Consider the following elements. First, r1(xij ; xNC) is a real-valued continuous function on the

interval [a; b], with [a; b] such that a  xNC(r1)  b. Second, assuming that a 2 [0; NC(1)) and

b 2 (; 1], the relevant interval is [a; b]  [0; 1]. Third, suppose there exists a number u such that

u 2 [r1(a; xNC);
r1(b; xNC)]. Fourth, by the existence of lower and upper dominance range,

r1(a; xNC) < 0 for any a 2 [0; NC(1)) and 
r1(b; xNC) > 0 for any b 2 (; 1]. Without any loss

in generality, we consider u = 0:

Hence, by the intermediate value theorem, there exists at least one threshold equilibrium

xNC(r1) 2 [0; 1]; such that:

r1(xNC ; x

NC) = 0

Moreover, given the single crossing condition of the function v(), xNC(r1) is exactly the unique

threshold equilibrium .

The second step requires to prove that any equilibrium must be a threshold equilibrium. In the

next subsection, we provide some intuition of the proof. See Goldstein and Pauzner (2005) for a

formal proof. It rests on the assumption of the uniform distribution for the fundamentals and the

error term.

6.2.2 Uniqueness

The usual argument that shows that with noisy signals, there is a unique equilibrium (see Carlson

van Damme (1993) and Morris and Shin (1998)) builds on the property of global strategic com-

plementaries or action monotonicity of the payo§ function: An agentís incentive to take an action

is higher when more other agents take that action. Mathematically, it requires that the payo§

function v() is non decreasing in nj :

However, as it is typical in standard bank run models, this condition does not hold, since a

patient ís agent incentive to run is highest when nj = 1
r1
; rather than when it is equal to 1: Once

the bank is already bankrupt, if more agents run, the probability of being paid at t = 1 decreases,

while the t = 2 payment remains null; incentives to run are then lower.

In order to preserve the uniqueness result, Goldstein and Pauzner (2005) weaken the action

monotonicity condition to a single crossing condition of the payo§ function v(). Modifying this

assumption comes at the expense of a requirement on signals to be su¢ciently well behaved. Noise
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" is assumed uniformly distributed (thus satisfying the Monotone Likelihood Ratio Property). As

the authors point out, when departing from the uniform world, other non monotone equilibria may

exist.

6.3 Proof of Proposition 1

The same arguments apply to prove that there exists one threshold strategy xCD(r1) such that

r1(xCD; x

CD) = 0. First, r1(xij ; xCD) is still continuous in x


CD(r1). Second, assume a 2

[0; CD(1)), b 2 (; 1], that there exists a number u such that u 2 [r1(a; xCD);
r1(b; xCD)]

and, in particular, consider u = 0; (3) By the existence of lower and upper dominance range,

r1(a; xCD) < 0 for any a 2 [0; CD(1)) and 
r1(b; xCD) > 0 for any b 2 (; 1]. By the intermediate

value theorem, there exists at least one threshold equilibrium xCD 2 [0; 1]; such that,

r1(xCD; x

CD) = 0:

Finally, concerning uniqueness, given that single crossing condition of v() is preserved, xCD(r1)

is exactly the unique threshold equilibrium .

6.4 Proof of Proposition 2

We start by assuming that Rf < r1 < R and p(j) = j . The proof has three steps. First, we

consider the situation with no cross deposits. From the marginal depositorís indi§erence condi-

tion, we obtain the equation that solves for xNC(r1). Second, we derive the condition that solves

for xCD(r1) with cross deposits. Third, we conjecture that x

NC(r1) = xCD(r1). We prove by

contradiction that in equilibrium it can not be true that the marginal depositor is indi§erent at

xij = xNC(r1) = xCD(r1). We conclude that the threshold equilibrium xCD(r1) is smaller than

xNC(r1):

6.4.1 No cross deposits

The marginal depositorís posterior distribution of j is uniform over the interval [xNC(r1) 

"; xNC(r1) + "]: In addition, her posterior distribution of n is uniform over [; 1]21: The inverse

of n(j ; xNC(r1)) becomes:

(xNC(r1); n) = x

NC(r1) + "(1 2

n 
1 

) (24)

The equation that determines xNC is:

fNC(xNC ; r1) 
R 1=r1
n=


xNC + "(1 2

n
1 )


 U(1nr11n R)dn

R 1=r1
n= U(r1)dnR 1

n=1=r1
1
nr1
U(r1)dn=0

(25)

21Since all agents share i) the threshold strategy xNC and ii) uniform beliefs about the proportion of individuals

who run as a function of j , n(j ; xNC).

26



6.4.2 Cross deposits

Because of Lemma 8, the marginal depositorís posterior distribution of j continues to be uniform,

now over the interval [xCD(r1) "; x

CD(r1)+ "]; her posterior distribution of n is still uniform over

[; 1], while the inverse of n(j ; xCD(r1)) is still governed by equation (24), after replacing x

NC(r1)

by xCD(r1). The equation that solves for x

CD(r1) is:

fCD(xCD; r1) 
Z 1=r1

n=


xCD + "(1 2

n 
1 

)




qU(

1 nr1
1 n

R) + (1 q)U

1 y
1 n

R+
y  nr1
1 n

Rf


dn


Z 1=r1

n=
U(r1)dn

Z 1

n=1=r1

1

nr1
U(r1)dn = 0 (26)

The marginal depositor observing xij = xCD(r1) is indi§erent between withdrawing at t = 2 or

t = 1.

6.4.3 Conjecture xNC(r1) = x

CD(r1)

If the conjecture were true, (25) would still hold, while (26) would become:

fCD(xNC ; r1) 
Z 1=r1

n=


xNC + "(1 2

n 
1 

)




qU(

1 nr1
1 n

R) + (1 q)U

1 y
1 n

R+
y  nr1
1 n

Rf


dn


Z 1=r1

n=
U(r1)dn

Z 1

n=1=r1

1

nr1
U(r1)dn = 0 (27)

Under xNC = x

CD, the only di§erence between (25) and (27) would be the Örst term.

We proceed to show the contradiction. If xNC is the threshold equilibrium, contingent on bank

j choosing not to cross deposit,

fNC(xNC ; r1) = 0 at xij = x

NC : (28)

Under the conjecture, it should also be true that,

fCD(xCD; r1) = f
CD(xNC ; r1) = 0:

However, for plausible values of y, namely y < y < y, 22 ;23and provided 1 < Rf < r1 < R,

22 In particular, provided p(j) = j , y solves for,
Z 1=r1

n=


1 y
1 n

R+
y  nr1
1 n

Rf


dn =

Z 1=r1

n=


1 nr1
1 n

R


dn:

which results in y  r1 + 1r1
log(

r11
r1(1)

)
:

23y can also be interpreted as the level of reserves above which the expected marginal beneÖt from cross depositing

at t = 1 (namely, the possibility to reallocate reserves at t = 1) is smaller than the marginal opportunity cost of

holding those reserves at t = 1 (namely, the forgone return of the long term investment).
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simulations show that,

Z 1=r1

n=


xNC + "(1 2

n 
1 

)




qU(

1 nr1
1 n

R) + (1 q)U

1 y
1 n

R+
y  nr1
1 n

Rf


dn (29)

>

Z 1=r1

n=


xNC + "(1 2

n 
1 

)


 U(

1 nr1
1 n

R)dn;

which reáects the contradiction. It is impossible that the marginal depositor is indi§erent between

withdrawing at t = 2 or t = 1, at xij = xNC = x

CD:

Note that 1 < Rf < r1 < R is to guarantee that the marginal depositor is at least indi§erent

about bankís choice to participate in the interbank market at t = 0:

To restore the equality in (29), that is,

fCD(xCD; r1) = f
NC(xNC ; r1) = 0; (30)

it has to be that,

xCD(r1) < x

NC(r1);

which concludes the proof of Corollary 1.

Example. Assuming q = 0 and that the agentsí utility function is,

U(c1 + ic2) =
(c1 + ic2)

1

1 
; (31)

the indi§erence condition for the marginal depositor in bank j, provided bank j chooses not to

participate, becomes:

f(xNC ; r1) =

Z 1=r1

n=


xNC + "(1 2

n 
1 

)


1

1 


1 nr1
1 n

R

1
dn+ (32)

+

Z n=1=r1

n=

1

1 
(r1)

1 dn+

Z 1

n=1=r1

1

nr1

1

1 
(r1)

1 = 0;

which results in:

xNC(r1) =

1
1 (r1)

1

1
r1
 + ln(r1)

r1



R 1=r1
n= "


1 2n1


1
1


1nr1
1n R

1
dn

R 1=r1
n=

1
1


1nr1
1n R

1
dn

: (33)

Instead, if bank j chooses to participate, the indi§erence condition for the marginal depositor

in bank j, provided bank j chooses not to participate, becomes:

f(xCD; r1) =

Z 1=r1

n=


xCD + "(1 2

n 
1 

)


1

1 


1 y
1 n

R+
y  nr1
1 n

Rf

1
dn+ (34)
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+

Z n=1=r1

n=

1

1 
(r1)

1 dn+

Z 1

n=1=r1

1

nr1

1

1 
(r1)

1 = 0

which yields,

xCD(r1) =

1
1 (r1)

1

1
r1
 + ln(r1)

r1



R 1=r1
n= "


1 2n1


1
1


1y
1nR+

ynr1
1n Rf

1
dn

R 1=r1
n=

1
1


1y
1nR+

ynr1
1n Rf

1
dn

:

(35)

6.5 Proof of Proposition 3

To show that rCD1 > 1, we Örst compute the derivative of the expected utility of a representative

depositor if bank j can cross deposit, with respect to rCD1 : Next, we evaluate it at rCD1 = 1 to show

that the derivative is strictly positive for " and CD(1) su¢ciently small.

With cross deposit, the expected utility of a representative depositor is:


CD

= max
rCD1

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

R CD(rCD1 )

0
1

rCD1

U(rCD1 )dj

+
R xCD+"


CD

(rCD1 )

 
njU(r

CD
1 ) + (1 nj)p(j)

 
qU

 
1njr

CD
1

1nj
R

!
+ (1 q)U

 
1y
1nj

R +
ynjr

CD
1

1nj
Rf

!!!
dj

+
R 
x
CD

(rCD1 )+"

 
U(rCD1 ) + (1 )p(j)

 
qU

 
1rCD1

1 R

!
+ (1 q)U

 
1y
1R +

yrCD1
1 Rf

!!!
dj

+
R 1


 
U(rCD1 ) + (1 )

 
qU

 
RrCD1

1

!
+ (1 q)U

 
Ry
1 +

yrCD1
1 Rf

!!!
dj

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

(36)

with nj abbreviating for n(j ; xCD(r
CD
1 )).

By Leibniz rule, the derivative of the Örst term in (36) is:

Z CD(r
CD
1 )

0

U 0(rCD1 )rCD1  U(rCD1 )

rCD21

dj +
@CD(r

CD
1 )

@rCD1

U(rCD1 )

rCD1
;

which at rCD1 = 1 becomes Z xCD(1)"

0
(U 0(1) U(1))dj < 0;

since CD(1) = x

CD(1) " and

@CD(1)

@rCD1
= 0; by deÖnition of CD(1):

Regarding the second term, its derivative with respect to rCD1 is,
R xCD+"
CD(r

CD
1 )

nj


U 0(rCD1 )Rqp(j)U 0


1njrCD1
1nj R


Rf (1 q)p(j)U 0


1y
1njR+

ynjrCD1
1nj Rf


dj

+
@xCD(r

CD
1 )

@rCD1


U(rCD1 ) + (1 )p(j)


qU

1rCD1
1 R


+ (1 q)U


1y
1R+

yrCD1
1 Rf



@CD(r
CD
1 )

@rCD1
U(rCD1 ):

(37)

At rCD1 = 1, @x

CD(1)

@rCD1
=

@CD(1)

@rCD1
= 0 and (37) equals

Z xCD(1)+"

xCD(1)"



U 0(1) qRp(j)U 0 (R) (1 q)Rfp(j)U 0


1 y
1 

R+
y  
1 

Rf


dj : (38)
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If q = 1, it is easy to show that (38) is
Z xCD(1)+"

xCD(1)"


U 0(1)Rp(j)U 0 (R)


> 0;

since U 0(1) > RU 0 (R) for all R > 1 and because p(j) < 1: Hence, it su¢ces to show that (38) is

still strictly positive if q = 0.

If q = 0, provided the utility function is su¢ciently well behaved and assuming that R > 1,

Rf > 1 and y are such that
R xCD(1)+"
xCD(1)"

p(j)

1y
1R+

y
1Rf


dj > 1, (38) satisÖes,

Z xCD(1)+"

xCD(1)"
U 0(1)Rf


p(j)U

0

1 y
1 

R+
y  
1 

Rf


dj > 0: (39)

We conclude that (38) is positive for all possible value of q.

Reasoning similarly, we can show that the derivative of the third and fourth term in (36), with

respect to rCD1 are also strictly positive at rCD1 = 1.

Recapitulating, the derivative of (36) with respect to rCD1 at rCD1 = 1 equals,

R CD(1)
0 (U 0(1) U(1))dj +

R xCD(1)+"
CD(1)


U 0(1)Rqp(j)U 0 (R)Rf (1 q)p(j)U 0


1y
1R+

y
1Rf


dj

+
R 
xCD(1)+"



U 0(1) qRp(j)U 0 (R) (1 q)Rfp(j)U 0


1y
1R+

y
1Rf


dj

+
R 1



U 0(1) + (1 )


qRU 0


R
1


+ (1 q)RfU 0


Ry
1 +

y
1Rf


dj

(40)

Terms 2 to 4 in (40) are positive, while the Örst term is negative. This term, however, is small for

su¢ciently small CD(1) = xCD(1)  ": As " goes to 0, 

CD(1) and x


CD(1) converge to CD(1).

Thus, for a su¢ciently small CD(1), the claim of the proposition holds.

6.6 Derivation of Inequality (17)

First, provided y >  and q < 1, the lower bound of fundamentals without and with interbank

market, NC(r1) and CD(r1), respectively, satisfy

CD(r1) > NC(r1): (41)

The level of fundamentals below which a patient agent prefers to withdraw, no matter what other

agents do, increases with an interbank market. This is because the expected return if waiting until

t = 2 is lower with cross deposits, under these conditions. Instead, if q = 1, CD(r1) = NC(r1).

Second, we have shown that

CD(r1) < 

NC(r1)

and that for any r1 > 1; CD(r1), 

NC(r1), CD(r1) and NC(r1) increase with r1.

Hence, equation (17) holds.
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6.7 Proof of Proposition 4

Lemma 5 and proposition 3 show that 1 < rNC1 < cFB1 and 1 < rCD1 < cFB1 . Hence, what we need

to prove is that rCD1  rNC1 .

To do this, we start by recalling proposition 2 and equation (16), which state that i§ rNC1 =

rCD1 = r1 and provided y < y < y and 1 < Rf < r1 < R,

0 < CD(r1) < 

NC(r1) < 1:

Because banks only participate in the interbank market i§ CD(r
CD
1 )  NC(rNC1 ) and since both

CD(r
CD
1 ) and NC(r

NC
1 ) are increasing in rCD1 and rNC1 , respectively, in equilibrium, it is true

that,

rCD1  rNC1 :
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