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Abstract

In this paper, we propose a quadratic term-structure model of the EURIBOR-OIS spreads.

These spreads are a�ected by both credit and liquidity risks, which we aim at disentangling.

Liquidity e�ects re�ect banks preferring a portfolio of cash and easy-to-liquidate swap contracts

to interbank loans, to cope with potential future liquidity needs. Credit e�ects correspond to

the premium required by the lender for the borrower's default risk compensation. Our approach

allows us to identify credit and liquidity e�ects and to further decompose the whole term structure

of spreads into credit- and liquidity-related parts. Our results shed new light on the e�ects of

unconventional monetary policy carried out in the Eurosystem. In particular, our �ndings suggest

that most of the recent easing in the euro interbank market is liquidity related.
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Introduction

1 Introduction

Since the beginning of the �nancial crisis, the interbank market has been carefully scrutinized by

commentators and policy-makers, both in Europe and in the US. This paper focuses on the spread

between the rates on unsecured interbank loans (e.g. EURIBOR or LIBOR) and their risk-free coun-

terparts, proxied by the Overnight Indexed Swap rate (OIS). This spread is considered as a crucial

indicator at the very core of the �nancial crisis: it reveals banks' concerns regarding both the credit

risk of their counterparts and their own liquidity needs.

In this paper, we disentangle credit and liquidity e�ects in the European interbank market. This de-

composition possesses essential policy implications. The appropriate actions to address a sharp rise

in spreads strongly depend on its cause: if the rise in spreads re�ects poor liquidity, policy measures

should aim at improving funding facilities. On the other hand credit concerns should be treated by

enhancing debtors' solvency (see Codogno et al. [2003]). This question is of utmost importance in

the euro area, where most of the unconventional monetary operations conducted by the European

Central Bank aim at the curbing of interbank risk (see Gonzales-Paramo [2011]).1

Our paper comes within the scope of the literature on term structure models of interest rates. We

build a two-factor arbitrage-free quadratic term structure model (QTSM) to reproduce the dynamics

of the term structure of EURIBOR-OIS spreads. The quadratic speci�cation of our model features

several useful properties: high tractability with closed-form spread formulae and strict positivity of

modelled spreads � a challenging task for classic ATSM.2 In addition, this representation of yields as

quadratic functions of factors makes it possible to capture higher-order moments of interbank spreads.

In our framework, the spreads are functions of credit and liquidity factors. The identi�cation of

the two shocks relies on credit and liquidity proxies. This allows us to separate spread �uctua-

tions attributable to liquidity and credit shocks. In addition, no-arbitrage assumptions allow for the

EURIBOR-OIS term structure decomposition into an expectation part and a risk premium part. The

former should be interpreted as the spread that would have prevailed if market participants were risk-

neutral, whereas the latter depends on the aversion of market participants to default and liquidity

risks.

Hence we obtain a double decomposition of interbank spreads � credit/liquidity on the one hand

and expectations/risk premium on the other hand � which helps to identify the consequences of un-

conventional monetary policies conducted by the ECB. We �nd that the credit component features

low-frequency �uctuations, and shows a persistent increase from August 2007 before stabilizing in

August 2012. The liquidity component experiences higher-frequency variations; in particular, it has

monotonously dropped since late December 2011. Eventually, the liquidity part of the spreads is

economically negligible in January 2013. Thus, our results suggest that the recent 3-year ECB loans

to euro commercial banks and the recently-announced ECB bond purchase program have helped to

1The ECB has changed dramatically its operational framework to counterbalance the interbank markets freeze, by
conducting special re�nancing operations with longer-than-usual maturity, or by establishing a �xed rate full allotment
rule to provide unlimited amount of liquidity to euro commercial banks at �xed cost.

2See Kim and Singleton [2012] for an example of QTSM for the pricing of Japanese government bonds, when the
interest rates are close to the zero lower bound.
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reduce the perception of liquidity risk and its related premium.3

The remainder of the paper is organized as follows. Section 2 presents the related literature. Section

3 details the construction of interbank rates. Section 4 develops the quadratic term-structure model.

Section 5 describes the identi�cation strategy and shows the estimation results. Section 6 performs

the decomposition of EURIBOR-OIS spreads and discusses the impact of the ECB unconventional

monetary policies. The last section concludes. Proofs are gathered in the Appendices.

2 Literature Review

In most term structure models, the authors assume that the intensity or the short-term rate is an

a�ne combination of the underlying factors. A quadratic speci�cation however possesses several

advantages. Constantinides [1992] shows that a standard term structure with a speci�c quadratic

short-term interest rate can generate positive yields for all maturities, and more �exibility in the

term structure to �t bond data. Leippold and Wu [2002a] generalize the quadratic short-rate term

structure models showing that this speci�cation provides closed-form or semi closed-form formulae

for bond pricing of most �xed-income derivatives. Leippold and Wu [2002b] provide further empirical

evidence that QTSM often outperforms the standard a�ne term structure speci�cation (ATSM).

Our identi�cation scheme follows several recent studies that model yield curves associated with di�er-

ent �xed-income instruments (e.g. bonds, repo, swaps). These studies usually exploit this modeling

to breakdown credit spreads or swap spreads into di�erent components. Speci�cally, Liu, Longsta�,

and Mandell [2006] use a �ve-factor a�ne framework to jointly model Treasury, repo and swap term

structures. One factor is related to the pricing of the Treasury-securities liquidity and another one

re�ects default risk. Feldhutter and Lando [2008] develop a six-factor model for Treasury bonds, cor-

porate bonds and swap rates. They decompose swap spreads into three components: a convenience

yield from holding Treasuries, a credit-element associated with the underlying LIBOR rate, and a

factor speci�c to the swap market. Their results indicate that the convenience yield interpreted as

liquidity premium is by far the largest component of spreads. Longsta�, Mithal, and Neis [2005]

use information in credit default swaps in addition to bond prices to obtain measures of the non-

default components in corporate spreads. Their estimation suggests that the non-default component

is time-varying and strongly related to measures of bond-speci�c illiquidity as well as to macroeco-

nomic measures of bond-market liquidity. Monfort and Renne [2012b] show that a substantial part

of euro-area sovereign spreads are driven by a liquidity component. The identi�cation of the latter

relies on the interpretation of the spreads between the bonds issued by KfW, a public German agency,

and their sovereign counterparts. Indeed, since KfW bonds are fully and explicitly guaranteed by the

Federal Republic of Germany, these spreads should essentially re�ect liquidity-pricing e�ects.

This paper is also related to the literature that focuses on interbank spreads. A wide range of studies

deals with the determinants of interbank spreads: Taylor and Williams [2009] claim that counterparty

risk was the main driver of the LIBOR/OIS spread, Michaud and Upper [2008] and Gyntelberg and

3We refer to the 3-year ECB loans to euro commercial banks as Very Long-Term Re�nancing Operations (VLTRO)
and to the ECB bond purchase program as Outright Monetary Transactions (OMT).
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Wooldridge [2008] �nd that credit and liquidity factors both played a role, while the results by

Schwarz [2009] and Filipovic and Trolle [2011] suggest that liquidity risk has accounted for most of

the LIBOR/OIS and EURIBOR/OIS spread variations over the period 2007-2009. Finally, Angelini,

Nobili, and Picillo [2011] highlight the main role of macro-factors � such as the aggregate risk-

aversion as opposed to individual lenders' and borrowers' characteristics � to account for the dynamics

of unsecured/secured money-market spreads. The measured impact of unconventional monetary

policies is also ambiguous: Taylor and Williams [2009] �nd no e�ects of the Fed's intervention in

2008, contrary to Christensen, Lopez, and Rudebusch [2009]. According to the latter, the Fed's TAF

reduced signi�cantly the 3-month maturity interbank spread by about 70 basis points.4 In Europe,

Angelini, Nobili, and Picillo [2011] measure a modest impact of ECB exceptional 3-month re�nancing

operations, in contradiction with Abbassi and Linzert [2011].5

3 Interbank market rates and risks

3.1 The unsecured interbank rates

The interbank money market is at the heart of bank funding issues. It is an over-the-counter market

(OTC) where interbank loans are negotiated with maturities ranging from one day to to 12 months.

As banks do not possess the same characteristics and underlying risks, there is no uniqueness of

interbank rates. Only the disaggregated rates are really representative of the funding issues of each

institution. However, such data are not publicly available.6. In order to conduct an analysis on

interbank risks, a more aggregated measure must be considered.

The Euro Interbank O�ered Rate (EURIBOR) provides a measure of the interest rate at which banks

can raise unsecured funds from other �nancial institutions.7 The European Banking Federation pub-

lishes a daily reference rate based on the trimmed averaged interest rates at which Eurozone banks

o�er to lend unsecured funds to other banks in the euro wholesale money market. There is one rate

for each maturity between one week and twelve months. More speci�cally, a daily survey is sent to a

panel of 40 to 50 banks in the Euro area. The selected banks are those with supposedly high cred-

itworthiness. The question of the survey is what are the rates at which euro interbank term deposits

are being o�ered within the Eurozone by one prime bank to another. Contrary to the LIBOR survey

(US), the banks are not asked about their own situation. The trimmed mean erases the 15% banks

4The TAF (for Term Auction Facility) enabled the US Federal Reserve to refund depository institutions against a
wide range of collateral. The program aimed to provide a wider access to the Fed liquidity to �nancial institutions, in
a period of heightened concerns regarding the liquidity needs of �nancial institutions.

5See Cecioni, Ferrero, and Secchi [2011] for a review of (a) the quantitative assessment regarding the relative
importance of the interbank spread drivers, and (b) of the e�ects of unconventional monetary policies in the USD and
euro interbank market.

6Notwithstanding, the individual contributions of panel banks are available at http://www.euribor-ebf.eu/euribor-
org However, given the speci�c question that is posed to the banks (see below), their contributions do not necessarily
reveal their own lending or borrowing costs.

7Temporary cases of frauds on both LIBOR and EURIBOR declarations by individual banks have been revealed by
traders' communications disclosure. In particular, Barclay's Bank was charged $200 million by the Commodity Futures
Trading Commission, $160 million by the American Department of Justice, and $59.5 million by the Financial Services
Authority. However, there is no information on both (i) how those �gures have been determined, (ii) the overall bias of
LIBOR declarations. Using CDS data, Mollenkamp and Whitehouse [2008] evaluate the di�erence between the reported
rate and the actual rate ranging from 3 to 87 bps depending on the institution. Nonetheless, contrary to LIBOR, Eisl,
Jankowitsch, and Subrahmanyam [2013] show that EURIBOR rates are less likely to be manipulated and less exposed
in size to those frauds. Such considerations on the precise evaluation of misleading declarations are beyond the scope
of this paper.
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of each distribution tail.

The loans that underlie the EURIBOR are unsecured, that is,the lending bank does not receive

collateral as protection against default by the borrowing one. Therefore, these rates carry some com-

pensation for solvency issue that we refer to as credit risk. Furthermore, through an interbank loan,

a lending bank exposes its funds during the time-to-maturity of the loan although those funds might

be needed to cover the bank's own shortfalls (see e.g. Taylor and Williams [2009] or Michaud and

Upper [2008]). Moreover, since an unsecured interbank loan is highly speci�c to the identity of both

counterparties, its unwinding is a costly task. Thus the liquidity risk a�ects the rate at which this

bank is willing to lend.8

Figure 1 presents the evolution of the 3-month EURIBOR from August 2007 to January 2013. During

the �rst year, the rate is stable around 500 basis points. The Lehman bankruptcy of September 2008

is followed by a sharp decline in EURIBOR of about of about 400 basis points, to 80 basis points.

From mid-2010 onwards, the EURIBOR rises slowly to 150 basis points in September 2011 and decays

to nearly 20 basis points during the recent period. Table 1 presents the descriptive statistics for 3, 6,

9, and 12-month EURIBOR maturities.

Figure 1: Level of 3M rates and spreads

Notes: Top panel: plot of the 3M EURIBOR (dark grey) and 3M OIS (lighter grey). Bottom panel: plot of the 3M
(dark grey) and 12M (lighter grey) EURIBOR-OIS spreads. Units are in basis points.

8This liquidity risk encompasses both market and funding liquidity issues. These are known to be di�cult to
assess separately. Brunnermeier and Pedersen [2009] de�ne market liquidity as the di�erence between market and
fundamental values of an asset, and funding liquidity as "speculator's scarcity of capital". They show, in particular,
that the covariance between market and funding liquidity is positive, and that illiquidity spirals can arise, causing
market illiquidity to impact crucially speculators' funding illiquidity through higher margins.
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3.2 The interbank risk-free rate

In this paper, the risk-free rates are proxied by the Overnight Indexed Swap (OIS) rates. An OIS is

a �xed-for-�oating interest rate swap with a �oating rate leg indexed on overnight interbank rates,

the EONIA in the euro-area case. OIS have become especially popular hedging and positioning ve-

hicles in euro �nancial markets and grew signi�cantly in importance during the �nancial turmoil of

the last few years. The OIS curve is more and more seen by market participants as a proxy of the

risk-free interbank yield curve (see e.g. Joyce, Lasaosa, Stevens, and Tong [2011]). As no principal is

exchanged, the OIS requires nearly no immobilisation of capital. Further, due to netting and credit

enhancement mechanisms (including call margins), the counterparty risk is limited in the case of a

swap contract (see Bom�m [2003]): it reduces the risk of loss due to the default of the borrower and

facilitates the search for reverse contracts to close the lender's position before the swap expiry date.

The upper panel of Figure 1 displays the 3-month OIS rate from August 2007 to January 2013. While

this chart shows that EURIBOR and OIS rates present strong common �uctuations, it also highlights

that the spread between the two rates has undergone substantial variations over the last �ve years.

In the next subsection, we discuss the term structure of the EURIBOR-OIS spreads.

3.3 Preliminary analysis of the EURIBOR-OIS spreads

Being mostly stable before August 2008, the spread increased abruptly during Lehman crisis until

December 2008, the 3-month spread peaking at 200 basis points, where a slow decay begins (see

Figure 1, bottom).9 Then, following a long stabilization period between August 2009 and 2010, a

sharp rise stroke again in mid-2011. Since the beginning of 2012, the EURIBOR-OIS spreads have

decreased, alternating between a linear decreasing trend and stable plateaux.

Table 1: Descriptive statistics of EURIBOR and OIS rates

min max amplitude mean std skewness excess kurtosis

bps

EURIBOR 3M 18,4 538,1 519,7 191,3 165,7 1,00 −0,69
EURIBOR 6M 31,6 543,1 511,5 211,1 157,7 1,00 −0,63
EURIBOR 9M 42,6 546,3 503,7 222,7 153,3 1,00 −0,60
EURIBOR 12M 53,7 549,3 495,6 233,5 149,8 0,99 −0,56
OIS 3M 4,5 434,6 430,1 138,3 148,5 1,14 −0,45
OIS 6M 2,35 442,85 440,5 140,0 147,6 1,15 −0,39
OIS 9M −0,5 453,5 454 142,9 146,0 1,14 −0,35
OIS 12M −1,1 465,3 466,4 146,5 144,1 1,13 −0,32
Spread 3M 10,4 206,9 196,5 53,0 34,4 1,64 3,44

Spread 6M 26,15 222,5 196,35 71,1 35,3 1,78 3,83

Spread 9M 37,45 227,9 190,45 79,8 37,3 1,72 3,17

Spread 12M 41,82 239 197,18 87,0 39,5 1,55 2,29

Notes: Those �gures are computed with weekly data ranging from 31st August 2007 to 4th January 2013.

Standard descriptive statistics of spreads are provided in Table 1. The OIS average for di�erent

maturities is between 50 and 90 basis points below the EURIBOR averages. It is also less volatile

and the volatility is similar across maturities of OIS. In comparison, the volatility of EURIBOR rates

9For sake of comparison, before summer 2007, the EURIBOR-OIS spread was around ten basis points. Part of this
deviation was accounted for by the fact that the EURIBOR is an o�er rate while the OIS is a mid rate.
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decreases more deeply with maturity. The means of spreads increase with respect to maturity, from

53 to 87 basis points. This indicates a positive slope in the term structure of spreads, that is graph-

ically illustrated by the bottom panel in Figure 1: except at the very beginning of the sample, the

12-month spread is always larger than the 3-month spread, up to around 50 basis points in late 2011.

Furthermore, the same plot shows that the slope is time-varying.

Whereas the standard deviations are decreasing with maturity for EURIBOR and OIS rates, the

standard deviations of spreads increase with maturity. Regarding higher-order moments, Table 1

indicates that both EURIBOR and OIS rates for all maturities are positively skewed and possess thin

tail distributions (negative excess kurtosis). For all maturities, spreads are more positively skewed

than the rates in level; also, contrary to the latter, spreads are heavy-tailed (positive excess kurtosis).

The heavy-tail behavior is typically illustrated during the Lehman crisis on Figure 1, where both

3-month and 12-month spreads peak to 207 and 239 basis points, respectively. These levels are about

4-standard-deviation far from their respective sample means.

Finally, a principal component analysis performed on the four EURIBOR-OIS spreads proves that

the �rst principal component captures most of spread �uctuations. It explains nearly 96% of the

whole variance of the spreads, emphasizing the very similar patterns observed in the variations of the

spreads of di�erent maturities.

In the next section, we develop a model that is consistent with these observations.

4 The model

4.1 The intensity

At date t, market participants get the new information wt = {rt, Xt, dt}, where rt is the short-term
risk-free rate between dates t and t + 1, Xt = [xc,t, xl,t]

′ is a 2 × 1 vector whose components are

respectively a credit-risk factor and a liquidity-risk one, and dt is a binary variable valued in {0, 1}.
A switch from {dt−1 = 0} to {dt = 1} corresponds to one of two adverse situations from the lender

point of view: either (a) the borrower on the unsecured interbank market defaults at date t, or (b) the

lender on the unsecured market would have need the (lent) amount of liquidity for other purposes,

which translates into costs for her.10

The state {dt = 1} is assumed to be absorbing. Let us denote by wt the cumulated information up to

date t, that is wt = {wt, wt−1, ...). Conditionally on (rt, Xt, wt−1), the probability of switching from

{dt−1 = 0} to {dt = 1} is given by:

P(dt = 1|dt−1 = 0, rt, Xt, wt−1) = 1− exp(−λt).

10While the explicit modeling of such costs is beyond the scope of this paper, let us give some brief rationale behind
these. In order to meet an expected liquidity need, the bank that had lent on the unsecured interbank market has two
options: (a) to get funding on the interbank market or (b) to sell assets. Assuming that the state of nature {dt = 1}
is marked by an aggregate shortfall of liquidity: the funding rate in option (a) is likely to be prohibitive; many banks
are led to sell assets simultaneously, driving down the selling prices of assets, which makes option (b) costly too.
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where λt is a function of Xt that we call intensity. Also, we assume that there is no Granger causality

from dt to (rt, Xt).

4.2 General pricing formulae

We assume that there exists a stochastic discount factor (SDF) between t and t+ 1, which is denoted

by Mt,t+1. This existence implies that the variables gathered in wt have both physical (P) and risk-

neutral (Q) dynamics. In addition, we assume that Mt,t+1 does not depend on dt+1.

Let us denote by ROISt,h and REURt,h the OIS rate of maturity h and the EURIBOR of the same ma-

turity, respectively.11 Both rates are homogeneous to zero-coupon rates. Whereas this is obvious in

the EURIBOR case, let us explain why it is also the case for OIS rates. Consider a bank that has

access to the overnight interbank market as well as to the EONIA swap market. Assume further

that this bank wants to invest 100 euros for a period of h weeks. Then, that bank can replicate a

zero-coupon investment yielding a compounded interest rate of ROISt,h by (a) entering a maturity-h

OIS swap (where it pays the �oating leg) while (b) lending, every day, the 100 euros (plus daily

accrued interests) on the overnight interbank market. By de�nition of the OIS contract, the accrued

interests earned by investing in the overnight market are going to equalize the interest accrued on

the �oating leg of the swap. Therefore, this strategy boils down to lending 100 euros at date t and

to get 100 exp(h/52 × ROISt,h ) at date t + h, which demonstrates that ROISt,h can be interpreted as a

zero-coupon yield.

Recalling that we consider the OIS rates as risk-free yields, we have rt = ROISt,1 and, for longer

maturities:

ROISt,h = − 1

h
log
(
EQ
t [exp {−rt − . . .− rt+h−1}]

)
where EQ denotes the expectation under the risk-neutral measure, conditional on wt. Turning to the

EURIBOR rates, we have:12

REURt,h = − 1

h
log
(
EQ
t [exp {−rt − λt+1 − . . .− rt+h−1 − λt+h}]

)
.

As in, e.g., Pan and Singleton [2008] or Longsta�, Pan, Pedersen, and Singleton [2011], we assume

that the short-term risk-free interest rate is independent from the intensity λt. Denoting by S(t, h)

the EURIBOR-OIS spread of maturity h, it follows that:

S(t, h) = REURt,h −ROISt,h = − 1

h
log
(
EQ
t [exp {−λt+1 − . . .− λt+h}]

)
. (1)

Equation (1) shows that, under these assumptions, the study of EURIBOR-OIS spreads does not

require the modelling of short-term risk-free interest rate rt.

11The pricing formulas derived in this paper implicitly feature continuously-compounded interest rates. Let r denote
a market-quoted interest rate (the OIS, say). Using the fact that the money-market day-count convention is ACT/360,
the corresponding continuously-compounded rate is given by ln(1+d× r/360)×365/d where d is the residual maturity
of the instrument.

12Note that this formula holds because (a) the SDF is assumed not to depend on dt and (b) the latter do not
Granger-cause λt. Moreover, these assumptions imply that the historical and risk-neutral intensities are the same
processes, i.e. Q(dt = 1|dt−1 = 0, rt, Xt, wt−1) = P(dt = 1|dt−1 = 0, rt, Xt, wt−1) = 1 − exp(−λt) (see Monfort and

Renne [2012a] or Gourieroux, Monfort, and Renne [mimeo]).
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4.3 Intensity speci�cation

The preliminary analysis in section 3.3 provides evidence that one factor is su�cient to account

for most of the EURIBOR-OIS term structure. Hence, we assume that the intensity depends on a

single common factor denoted by xt, which is the sum of the the credit-related factor xc,t and the

liquidity-related one xl,t.

xt = xc,t + xl,t (2)

Moreover, the intensity is a quadratic function of xt:

λt = λ0 + λ1xt + λ2x
2
t . (3)

To ensure that the underlying probability is constrained between 0 and 1, λt has to be positive

whatever the value of xt. This constraint writes λ0 > λ21/4λ2.

Under the risk-neutral measure, factor xt follows a stationary AR(1):

xt = µ∗ + ϕ∗xt−1 + ε∗t where ε∗t ∼ IIN
Q(0, 1), |ϕ∗| < 1, (4)

and the standard deviation of xt's innovations are set to one for sake of identi�cation.

4.4 Dynamics of xc,t and xl,t

Let us now present the physical dynamics of the credit and the liquidity factors xc,t and xl,t. As the

two risks can in�uence each other (see e.g. Ericsson and Renault [2006]), we authorize lagged causality

between the two factors. However, these factors are contemporaneously in�uenced by independent

idiosyncratic shocks εc,t and εl,t, that we refer to as credit shock and liquidity shock, respectively.

Their joint dynamics is described by the following V AR(1) representation.(
xc,t

xl,t

)
=

(
µc

µl

)
+

(
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

)(
xc,t−1

xl,t−1

)
+

(
σc 0

0 σl

)(
εc,t

εl,t

)
(5)

where (εc,t, εl,t)
′ ∼ IIN P(0, I2), and the eigenvalues of the autoregressive matrix Φ = [ϕi,j ]i,j={1,2}

are lesser than one in modulus.

Assuming that the SDF is exponential-a�ne in (xc,t, xl,t)
′, the expanded risk-neutral dynamics of

these factors is of the form:13(
xc,t

xl,t

)
=

(
µ∗c

µ∗l

)
+

(
ϕ∗1,1 ϕ∗1,2

ϕ∗2,1 ϕ∗2,2

)(
xc,t−1

xl,t−1

)
+

(
σc 0

0 σl

)(
ε∗c,t

ε∗l,t

)

where (ε∗c,t, ε
∗
l,t)
′ ∼ IINQ(0, I2). As for the physical dynamics, the process is assumed stationary

under the risk-neutral measure.

Given that we want the risk-neutral dynamics of xt = xc,t + xl,t to be as described by Equation (4),

the parameter specifying the risk-neutral dynamics of (xc,t, xl,t)
′ have to satisfy:

µ∗ = µ∗c + µ∗l and ϕ
∗
1,1 + ϕ∗2,1 = ϕ∗1,2 + ϕ∗2,2 = ϕ∗ and σ2

c + σ2
l = 1. (6)

13The SDF speci�cation is provided in appendix A.1.
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4.5 Recursive pricing formulae

Let us denote Xt = (xc,t xl,t)
′ for simplicity. It is a well-known result that Equations (3) and (4)

implies that the spreads S(t, h), de�ned by Equation 1, can be expressed as a quadratic function of

Xt (compare with e.g. Leippold and Wu [2002a] in the context of quadratic short-term rate). From

Equations (1), (3) and (4), we have:

S (t, h) = θ0,h + θ1,hxt + θ2,hx
2
t (7)

The three parameters θ0,h, θ1,h and θ2,h are maturity-dependent and are functions of µ∗, ϕ∗, λ0, λ1,

and λ2. We further show in Appendix A.3 that the θ0,h, θ1,h, and θ2,h loadings can be computed

recursively as:
−hθ0,h = −λ0 + θ0,h−1 +

θ̃1,h−1
Kh

(
µ∗ + 1

2 θ̃1,h−1

)
+ (µ∗)2

θ̃2,h−1
Kh

− 1
2 log (Kh)

−hθ1,h =
ϕ∗

Kh

(
2µ∗θ̃2,h−1 + θ̃1,h−1

)
−hθ2,h = (ϕ∗)2

Θ̃h−1
Kh

(8)

where θ̃h−1 = θh−1 − λ1, θ̃2,h−1 = θ2,h−1 − λ2, and Kh = (1− 2θ̃2,h−1).

5 Estimation procedure

5.1 The structural identi�cation of credit and liquidity factors

Observations of spreads are not su�cient to separate the credit factor and the liquidity one since,

as shown by Equation (7), spreads depend on the sum of the factors (i.e. xt) only. We therefore

introduce credit and liquidity proxies in order to identify xc,t and xl,t. Let us detail the computation

of these proxies.

The liquidity proxy is the �rst principal component14 of a set of three liquidity-related variables.

These variables are chosen in order to capture di�erent aspects of liquidity pricing. In particular,

the �rst two proxies are mostly related to market liquidity whereas the last one is mostly related to

funding liquidity.

• A �rst liquidity-pricing factor is the KfW-Bund spread.15 KfW is a public German agency. KfW

bonds are guaranteed by the Federal Republic of Germany. Hence, they embed the same credit

quality as their sovereign counterparts, the so-called Bunds. KfW bonds being less liquid than

their sovereign counterpart), the KfW-Bund spread essentially re�ect liquidity-pricing e�ects,

see Schwarz [2009], Monfort and Renne [2012a] or Schuster and Uhrig-Homburg [2012]. In

the same spirit, Longsta� [2004] computes liquidity premia based on the spread between U.S.

Treasuries and bonds issued by Refcorp, that are guaranteed by the Treasury.

• A second liquidity factor is the Tbill-repo spread, computed as the yield di�erential between the

3-month German T-bill and the 3-month general-collateral repurchase agreement rate (repo).

14nearly 50% of the total variance is explained by the �rst principal component.
15The KfW bond yield not being available for all maturities, we use the 5-year KfW-Bund spread.
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From an investor point of view, the credit qualities of the two instruments are comparable

(as argued by Liu, Longsta�, and Mandell [2006]). The di�erential between the two rates

corresponds to the convenience yield, that can be seen as a premium that one is willing to pay

when holding highly-liquid Treasury securities.16

• A third factor is based on the Bank Lending Survey conducted by the ECB on a quarterly

basis17. Speci�cally, this indicator is based on the following question: Over the past three

months, how has your bank's liquidity position a�ected the credit standards as applied to the

approval of loans or credit lines to enterprises? 18 A weekly series is obtained by linearly

interpolating the quarterly series.

The credit proxy is the �rst principal component of a set of 36 Euro-zone bank CDS denominated

in USD.19 Eight are German, six Italian, �ve Spanish, four French, four Dutch, three Irish, three

Portuguese, two Austrian, and one Belgian. As a robustness check exercise, we also replace the �rst

principal component by the median or the 50% trimmed mean of the CDS as in Filipovic and Trolle

[2011]. Our results are robust to this change in credit proxy.

The dynamics of the proxies are provided on Figure 2. The liquidity proxy experiences a great peak

right before the Lehman crisis, whereas the credit proxy tends to increase until late November 2011.

For both proxies, we observe a particularly calm period from August 2009 to April 2010, when the

interbank market became less tensed. Looking at the monetary policy events, we see that VLTRO

events of December 2011 and March 2012 (the announcement and the two allotments, third to �fth

vertical black line on Figure 2) are associated with a decrease of the proxies. The same result is

available for Mario Draghi's London speech of late July 2012 (last vertical black line).20

5.2 Identi�cation strategy: linking proxies and latent factors

We denote the credit and liquidity proxies by Pc,t and Pl,t respectively. We posit that the proxies

are quadratic functions of the corresponding latent factors.21 Therefore, using the moving average

representation of the factors, the credit (resp. liquidity) proxy is a combination of past (resp. past

and current) liquidity shocks, of past and current (resp. past) credit shocks and of a measurement

error νc,t (resp. νl,t). Formally:{
Pc,t = πc,0 + πc,1xc,t + πc,2x

2
c,t + σνcνc,t

Pl,t = πl,0 + πl,1xl,t + πl,2x
2
l,t + σνlνl,t

(9)

16This premium stems from various features of Treasury securities, such as repo specialness (see Feldhutter and
Lando [2008]).

17This survey addresses issues such as credit standards for approving loans as well as credit terms and conditions
applied to enterprises and households. The survey is addressed to senior loan o�cers of a representative sample of Euro
area banks. The sample group participating in the survey comprises around 90 banks from all Euro area countries.

18The respondents can answer ++, +, 0, − or −− to that question. Our indicator is computed as the proportion of
− and −− as a ratio of total answers.

19nearly 75% of the total variance is explained by the �rst principal component.
20In a context of mounting fears of euro-area break-up, the President of the ECB, Mario Draghi, declared that "the

ECB [was] ready to do whatever it takes to preserve the euro" at the Global Investment Conference in London, 26 July
2012.

21This relationship, of the same kind of the one relating the latent factors to modelled spreads, is consistent with
the fact that several variables used in the computation of proxies are also homogeneous to interest rates.
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Figure 2: Proxies dynamics

Notes: Time ranges from August 31, 2007 to January 4, 2013. Solid lines are observed proxies. The black vertical
axes stand from left to right for: SMP program announcements (�rst two axis), VLTRO announcement and
allotments (next three axis), and Mario Draghi's London speech (last axis).

where (νc,t, νl,t)
′ ∼ IIN (0, I2) are the measurement errors on the proxies. As long as xc,t and xl,t

are not instantaneously correlated, the same is true for the proxies. Moreover, as for the factors xc,t

and xl,t, we assume that there is no instantaneous causality between the two proxies.

The state-space representation of the model is obtained by gathering: (a) the P-dynamics of the factors

xc,t and xl,t (Equation (5)), (b) the spread formulae (Equation (7)) and (c) the proxies measurement

equations (Equation (9)).

Transition:

(
xc,t

xl,t

)
=

(
µc

µl

)
+

(
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

)(
xc,t−1

xl,t−1

)
+

(
σc 0

0 σl

)(
εc,t

εl,t

)

Measurement :

{
St = θ0 + θ1(xc,t + xl,t) + θ2(xc,t + xl,t)

2 + σηηt

Pi,t = πi,0 + πi,1xi,t + Πix
2
i,t + σν,iνi,t ∀i = {c, l}

(10)

where St is the vector of observed spreads; the vector of pricing errors ηt is composed of independent
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Gaussian white noises with unit variance; vectors θ0, θ1, and θ2 are composed of θ0,h, θ1,h, and θ2,h

for the four considered maturities. All the parameters of the P-dynamics and µ∗ and ϕ∗ are identi�-

able.22 The estimation constraints on the parameters are presented in Appendix A.2.

5.3 The Augmented Kalman Filter for QTSM estimation

We estimate the state-space model with maximum likelihood techniques accompanied with a non-

linear Kalman �lter. Whereas recent articles use extensively the so-called Unscented Kalman Filter

(UKF, see for instance Filipovic and Trolle [2011] or Christo�ersen, Dorin, Jacobs, and Karoui [2012]),

we rely on the Augmented Kalman �lter (AKF) of Monfort, Renne, and Roussellet [2013] �tted to

quadratic measurement equations.

The AKF is based on the fact that the measurement equations are quadratic in the latent factor

Xt = (xc,t, xl,t)
′ but a�ne in the stacked vector Wt = (X ′t, V ech(XtX

′
t))
′. This stacked vector Wt

de�nes a new state-space representation, and new factor dynamics. In particular, the measurement

equations can be transformed as:
St,h

Pc,t

Pl,t

 =


θ0,h

πc,0

πl,0

+


θ1,h θ1,h θ2,h 2θ2,h θ2,h

πc,1 0 πc,2 0 0

0 πl,1 0 0 πl,2

Wt +


σηηt,h

σνcνc,t

σνlνl,t

 ,

where Wt =
(
xc,t xl,t x2c,t xc,txl,t x2l,t

)′
.

Monfort, Renne, and Roussellet [2013] show that the �rst two moments of Wt conditional on its

past values are available in exact closed-form. It allows to approximate this conditional distribution

of Wt even though it has no closed-form. Once the state-space model is rewritten as a function of

Wt, a standard linear Kalman-Bucy Filter can be applied for �ltering and estimation purposes the

conditional distribution of Wt being assumed to be Gaussian.23

5.4 Estimation results

We compute the estimations on weekly data from August 31, 2007 to January 4, 2013. The EURIBOR

and OIS data are extracted from Bloomberg for the following maturities: 3, 6, 9, and 12 months.

Table 2 reports the estimates of the parameters specifying the historical dynamics of factor xc,t and

xl,t. Both processes are very persistent through time, as the diagonal coe�cient are close to one.

Figure 3 represents the evolution of the latent factors in our sample.

Both standard errors of the residuals are signi�cant, and give an intuition on the size of each id-

iosyncratic shocks in the common factor xt. The liquidity shocks weighs more in the variance of the

innovations of xt as σl is largely above σc. Figure 3 illustrates the higher volatility of the liquidity

component compared to the credit one, and it experiences a more irregular behaviour with large

22The speci�c case of the identi�ability of σc and σl parameters is treated in appendix A.2.
23The parameter estimates stem from the maximization of the likelihood function. In order to avoid local maxima

issues, the estimation is achieved in two steps. The Arti�cial Bee Colony stochastic algorithm (see Karaboga and
Basturk [2007]) is used to �nd the potential maxima areas of parameters. The results are then used as starting values
for a usual simplex maximization algorithm and the best estimate is selected.
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Table 2: Factor parameter estimates

intercept xc,t−1 xl,t−1 εc,t εl,t

xc,t 0, 0004 0, 9932∗∗∗ 0, 0023 0, 1992∗∗∗ 0
(0, 0368) (0, 0053) (0, 0024) (0, 0148)

xl,t 0, 2993 −0, 0275 0, 9783∗∗∗ 0 0, 9800∗∗∗

(0, 3054) (0, 0546) (0, 0140) (0, 0030)

Notes: Robust standard errors are in parentheses. Signi�cance code: '∗∗∗' for p-value < 0.01, '∗∗' for p-value < 0.05,
'∗' for p-value < 0.1.

jumps. Such jumps are manifest in late 2008 and late 2011, when the Lehman collapse and the

tensions on the European sovereign markets were associated with large positive shock on the liquidity

factor.

Figure 3: Factor physical dynamics

Notes: Time ranges from August 31, 2007 to January 4, 2013. The grey shaded areas are the 95% con�dence
intervals of the latent factors. The horizontal black line is the argmin of the intensity function given in Equation (3).

The remaining parameter estimates are gathered in Table 3, which shows the prevalent e�ect of the

quadratic term in the intensity speci�cation (Equation (3)) and in those of the proxies. These results

emphasize the importance of quadratic terms in the spread modelling. The risk-neutral parameters

also show a great persistence of xt in the risk-neutral world.

Our model features remarkable �tting properties on both the observed spreads (see Table 3). In

particular, the standard deviations of the pricing errors is about 10 basis points. Lastly, Table 4

reports the factor loadings associated with the spread speci�cation for the di�erent maturities. The

loadings used in the pricing formulae are those under the Q-measure (�rst four rows) whereas those

under the P measure are used to obtain the decomposition of the spread in expected value and term

premia (see Figure 4, bottom �gure).

Even if the size of the spreads factor loadings are di�cult to interpret, it is useful to look at the
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Table 3: Risk-neutral and measurement parameter estimates

Equation Parameter Estimate Parameter Estimate Parameter Estimate

xt µ∗ 0, 2676∗∗∗ ϕ∗ 0, 9973∗∗∗

(0, 0363) (0, 0018)
Pc,t πc,0 −8, 8447∗∗∗ πc,1 −0, 00002 πc,2 0, 4376∗∗∗

(0, 3464) (3, 6923) (0, 0605)
Pl,t πl,0 −1, 5411∗∗ πl,1 0, 1187∗∗∗ πl,2 0, 0040∗∗∗

(0, 2047) (0, 0225) (0, 0005)
λt λ0 0, 0724 λ1 0, 0001 λ2 0, 0019∗∗∗

(0, 0840) (0, 0118) (0, 0003)
noise σ2

νc 0, 0066 σ2
νl

0, 1000 σ2
η 0, 0105∗∗∗

(0, 0098) � (0, 0005)

Notes: Robust standard errors are in parentheses. Signi�cance code: '∗∗∗' for p-value < 0.01, '∗∗' for p-value < 0.05,
'∗' for p-value < 0.1. The '�' sign indicates that the constraint on σ2

νl
is binding thus the parameter is not estimated.

Table 4: Factor loadings estimates

Q-measure Intercept xt x2t
Spread 3M 0,0938 0,0069 0,0018
Spread 6M 0,1277 0,0128 0,0018
Spread 9M 0,1742 0,0183 0,0017
Spread 12M 0,2320 0,0234 0,0016
P-measure intercept xc,t xl,t x2c,t x2l,t xc,txl,t

Spread 3M 0,1030 0,0054 0,0062 0,0012 0,0014 0,0013
Spread 6M 0,1349 0,0068 0,0094 0,0008 0,0012 0,0009
Spread 9M 0,1673 0,0064 0,0110 0,0006 0,0009 0,0007
Spread 12M 0,1985 0,0050 0,0115 0,0004 0,0008 0,0005

Notes: The constraints on the Q-dynamics to identify µ∗ and ϕ∗ impose that only xt and x2t are involved in the

observed spread modelling (see Equation (7)). However, such constraints are not imposed for the P-dynamics thus

xc,t and xl,t possess di�erentiated in�uences on the spread under the expectation hypothesis. Hence for each

maturity, three factor loadings are needed under the Q-measure and six are needed under the P-measure.

derivatives of the spreads equations. Suppose that we shock the xt factor of 1 unit. The instantaneous

e�ect on the spreads depends on the current value of xt and not only on the size of the shock ∆xt.

These e�ects are approximately given by:

∂S(t, h)

∂xt
=


0, 0069 + 0, 0018× xt for h = 3M

0, 0128 + 0, 0018× xt for h = 6M

0, 0183 + 0, 0017× xt for h = 9M

0, 0234 + 0, 0016× xt for h = 12M

This highlights the non-linear aspect of our model. If the interbank market is already in distress,

then the agents react more strongly to any modi�cation of the underlying risks. For instance, at the

peak of Lehman crisis and in January 2013 and 2 months after the OMT announcement, the values

of xt are around 31 and 9, respectively. The respective instantaneous response to a 1 standard error

unit positive shock on the factor at those periods on the 3-month maturity spread would be 6,27 in

2008 and 2,31 bps in 2013 (of which 0,69 bps is constant in time).
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6 Decomposing EURIBOR-OIS spreads

In this section, we derive a simple decomposition method for our QTSM speci�cation and decipher

the credit and liquidity components in EURIBOR-OIS spreads for all maturities.

6.1 The decomposition method

Rewriting the spreads equation, we get:

S(t, h) = θ0,h + θ1,hxt + θ2,hx
2
t

= θ1,hxc,t + θ2,hx
2
c,t︸ ︷︷ ︸

credit spread

+ θ1,hxl,t + θ2,hx
2
l,t︸ ︷︷ ︸

liquidity spread

+ 2θ2,hxc,txl,t︸ ︷︷ ︸
interaction

+θ0,h (11)

The spreads can be separated in four di�erent parts. Two �rst parts are the credit and liquidity

components of the spreads. A third term that we call interaction represents the price e�ect of the

joint presence of both risks in the economy. As θ2,h is positive, the interaction becomes more positive

as the two factors co-move, and more negative if they evolve in opposite directions. The fourth com-

ponent is the intercept θ0,h which is constant through time, and cannot be attributed to any of those

three parts excepted arbitrarily. As a consequence, we set it apart and focus on the time-varying

terms.

Our approach is more direct than Smith [2010] who sets the market price of risk to zero to construct

the decomposition of spreads. With this method, she obtains a decomposition of the term premia in

liquidity and credit risks. In comparison, our decomposition method makes it possible to decompose

both observed spreads and the term premia. In addition, our identi�cation scheme is more relevant

as we authorize lagged Granger causality in the latent factors, stating that both credit and liquidity

risks can be intertwined, but are forced to be instantaneously independent.

We are also able to decompose the spreads under the physical measure (or under the expectation

hypothesis). Using the estimated P-dynamics parameters (see Table 2), we calculate a new set of factor

loadings under the expectation hypothesis θP0,h, θ
P
1,h, and θ

P
2,h (see Table 4). Those coe�cients are now

functions of (λ0, λ1, λ2, µc, µl, ϕ1,1, ϕ1,2, ϕ2,1, ϕ2,2). Contrary to the risk-neutral parameters µ∗ and

ϕ∗, the physical parameters are less constrained and authorize xc,t and xl,t to have a di�erentiated

impact on the spreads under the expectation hypothesis. The decomposition writes:

SP(t, h) = θP1,h,cxc,t + θP2,h,cx
2
c,t︸ ︷︷ ︸

credit spread

+ θP1,h,lxl,t + θP2,h,lx
2
l,t︸ ︷︷ ︸

liquidity spread

+ 2θP2,h,clxc,txl,t︸ ︷︷ ︸
interaction

+θP0,h (12)

The relative shares of the spreads attributed to the credit, liquidity and interaction parts being very

similar to the risk-neutral decomposition depicted on Figure 4, panel (a), we do not present the

related graphs for the sake of clarity.
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6.2 Decomposition results

The decompositions of 6-month maturity spread are represented on Figure 4. On average, the liq-

uidity component accounts for most of the spread averages over the sample period representing more

than 44% of the spreads for all maturities (see Table 5). The interaction represents between 15 and

25 % of the spreads, and the credit component represents about 13% of the spreads.

Table 5: Descriptive statistics of spread components

Credit Liquidity Interaction θ0,h Credit Liquidity Interaction
Q-components Term premia

average (level in bps)
Spread 3M 6,64 26,42 14,38 9,38 1,97 4,71 4,11
Spread 6M 9,04 31,27 13,90 12,77 4,56 9,84 6,48
Spread 9M 11,28 35,77 13,43 17,42 7,44 15,25 7,96
Spread 12M 13,36 39,93 12,99 23,20 10,37 20,64 8,83

average (% of total spread avg)
Spread 3M 11,68 46,50 25,31 16,51 3,46 8,28 7,23
Spread 6M 13,50 46,68 20,75 19,07 6,81 14,69 9,68
Spread 9M 14,48 45,92 17,24 22,36 9,56 19,57 10,21
Spread 12M 14,93 44,63 14,52 25,93 11,59 23,07 9,87

Interestingly, we also �nd a maturity-invariant percentage for the liquidity component average whereas

the credit component average has an increased importance with maturity. This indicates that credit

risk plays relatively more at the long end of the term-structure. Concentrating on the top panel

of Figure 4 �rst top graph, we see however that the liquidity factor accounts for much of the high-

frequency variations in the spreads, in particular during the distress period of stress in late 2008 (after

the Lehman collapse) and in end 2011 (in a period of particular strain in the Euro sovereign markets).

Panel a) and b) of Figure 4 emphasize the low-frequency �uctuations in the credit component, which

increased almost monotonously since August 2007 before stabilizing in the summer 2012. This result

is in line with the previous �ndings of Schwarz [2009] and Filipovic and Trolle [2011]. The interaction

term which is always positive, is substantial over the sample period. For the 6-month maturity, the

interaction term evolves between 0 and 40 bps over 2007-2013. However, looking at panel (b) of

Figure 4, we observe that its evolution is smoother than the liquidity component.

The decomposition of the spread between the term premia and the spread under physical dynamics

is also computed (bottom panel of Figure 4): the term premia component and the observed spread

have very similar features, and are positively correlated. Figure 5 presents decompositions of the

term structure of EURIBOR-OIS spreads at di�erent dates. In particular, the bottom row shows the

share of the modelled spreads that is accounted for by term premium. The longer the maturity, the

larger this share.

6.3 The impact of unconventional monetary policy on interbank risk

Vis-à-vis the literature �ndings presented in the introduction, our application sheds a new light on

the dynamics of the EURIBOR-OIS spreads, and includes the most recent ECB measures. Our es-

timation sample indeed encompasses the announcement of the Securities Market Program's (SMP)
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Figure 4: 6M EURIBOR - OIS spreads decomposition

Notes: Date ranges from August 31, 2007 to January 4, 2013. Units are in basis points. Panel(a) represents the
stacked components of the spread: light grey constant component is the intercept of the spread equation, the other
legends are given on Panel(b) graph. Panel(b) represents the � not stacked � components of the spread. The graph at
the bottom represents the modelled spread and its term premia. The black vertical axes stand from left to right for:
SMP program announcements (�rst two axis), VLTRO announcement and allotments (next three axis), and Mario
Draghi's London speech (last axis).

in May 2010 and August 2011, the announcement (December 2011) and allotments (February and

March 2012) of the Very Long Term Re�nancing Operations, and the announcement of the Outright

Monetary Transactions in July 2012.24

Interestingly, the EURIBOR-OIS spreads have decreased continuously since the VLTRO announce-

ment in December 2011. This drop has led many commentators (and central bankers) to claim the

ECB unconventional re�nancing operations were successful in alleviating interbank market tensions.

In particular, according to ECB o�cials, the non-standard VLTRO operations addressed "only the

liquidity side of the [interbank market] problem".25 Our results seem to support this view as the

liquidity component of the spreads has slowly faded away to nearly zero since the VLTRO anounce-

ment date (see Figure 4, Panel b). A further positive e�ect can also be attributed to the OMT

announcement through liquidity.

24As most of the market commentators, we assimilate the London's speech of Mario Draghi as the � uno�cial �
announcement date of the OMT.

25See Mario Draghi's interview with the Wall Street Journal, published on February 24, 2012, or the lecture by Peter
Praet in February 20, 2012.
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The same pattern can be observed on Figure 5 (�rst and second rows of charts). After the SMP

and before the VLTRO announcement, liquidity risk still accounts for most of the term structure of

interbank spreads (second column of charts). However, after the VLTRO allotments, liquidity risk

represents only 10 to 30 basis points across maturities (third column) and becomes negligible for all

maturities after the OMT announcement (fourth column). In comparison, looking at both Figures 4

and 5, those policy measures had virtually no impact on the credit component of the spread.

Turning to the last row of Figure 5, it appears that unconventional monetary policies were followed by

decreases in both the expected component and the term premia. This result contradicts somehow the

�ndings in Angelini, Nobili, and Picillo [2011], according to whom term premium embodies much of

the spreads �uctuations. It is however di�cult to compare the two results due to methodology di�er-

ences: contrary to our speci�cation, Angelini, Nobili, and Picillo [2011] blend spreads with di�erent

maturities without handling the whole term structure of spreads in a coherent no-arbitrage framework.

All in all, even if the EURIBOR-OIS spreads have not really reacted to the SMP program. Our results

suggest that the recent unconventional monetary policy measures undertaken within the Eurosystem

have contributed to reinforce banks liquidity positions and a stabilization of the credit risk in the

Eurozone.
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Conclusion

We develop a no-arbitrage two-factor quadratic term structure model for the EURIBOR-OIS spreads

across several maturities, from August 2007 to January 2013. To identify credit and liquidity compo-

nents in the spreads, we introduce credit and liquidity proxies based on CDS prices, market liquidity

and funding liquidity measures. Our decomposition handles potential interdependence between credit

and liquidity risks and is consistent across maturities. In addition, all time-varying components of

the spread can be directly interpreted with our identi�cation scheme.

We �nd that the liquidity risk generates most of the variance of the spread over the estimation

period. The credit risk is less volatile, but represents most of the spread level in late 2012. Our

decompositions allows us to shed new light on the e�ects of unconventional monetary policy of the

ECB on the interbank risk. We show that whereas the bond-purchase programs of 2010 and 2011

were not followed by decreases in any of the EURIBOR-OIS spread components, the VLTROs and

the OMT announcements have had a substantial impact mainly, on the liquidity risk. At the end of

the sample, the liquidity risk is negligible, and the remaining part of the spreads is only credit risk

related.
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A Appendix

A.1 Market prices of risk de�nition

The exponential-a�ne SDF between t and t+ 1, denoted Mt,t+1 is given by:

Mt,t+1 = exp

[
Γ′t

(
εc,t

εl,t

)
− 1

2
Γ′tΓt − rt

]
, (13)

where Γt = Γ0+Γ1(xc,t xl,t)
′ corresponds to the vector of market prices of risks (MPR). The mapping

between the parameters de�ning the historical and the risk-neutral dynamics depends on these prices

of risk: (
µ∗c

µ∗l

)
=

(
µc

µl

)
+

(
σc 0

0 σl

)
Γ0 (14)(

ϕ∗1,1 ϕ∗1,2

ϕ∗2,1 ϕ∗2,2

)
=

(
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

)
+

(
σc 0

0 σl

)
Γ1 (15)

A.2 Identi�ability and estimation constraints

Let us consider an alternative vector of factors which we call X̃t = (x̃c,t, x̃l,t)
′, which is an a�ne

transformation of Xt.

X̃t = m+MXt

As the proxies are respectively functions of only one component of Xt, this imposesM to be diagonal.

Hence the alternative factors possess the form: x̃i,t = Mixi,t+mi for i = {c, l}. In addition, to ensure
that only x̃t = (x̃c,t + x̃l,t) enters the spread formulae, we must impose Mc = Ml. In the end, the

conditional variance of x̃t must be equal to 1, that is

M2
c σ

2
c +M2

l σ
2
l = 1 ⇐⇒ M2

c (σ2
c + σ2

l ) = 1

⇐⇒ Mc = 1

Thus M = I2.

For interpretation purposes, we also impose that a large proportion of the latent factors are located

such that the intensity function and the proxies are monotonously increasing in the factors. That is

to say:

P
(
∂λt
∂xt

(xi,t) > 0

)
= 1− α, P

(
∂Pi,t
∂xi,t

(xi,t) > 0

)
= 1− α ∀i = {c, l},

where α is typically a small number. The rationale is the following: we impose that when the

latent factors are increasing, the proxies increase as well. We also want an increase in the under-

lying credit or liquidity risk to be translated into an increase in the spread. There must there-

fore be a monotonous increasing relationship between the intensity and the factors. The previous

constraint implies conditions on the mean of the latent process. Denoting Φ = [ϕi,j ]i={1,2}
j={1,2}

and
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mi = max

(
argmin

x
λt, argmin

x
Pi,t

)
∀i = {c, l}, we have

P [xi,t < mi] = α⇐⇒ E(xi,t) = mi − qN (0,1)(α)
√
V(xi,t)

where E(•) and V(•) are the unconditional expectation and variance operators, and qN (0,1)(α) is the

level α quantile of the normalized gaussian distribution. We get the following conditions on µc and

µl.(
µc

µl

)
= (I2 − Φ)

[(
mc

ml

)
− qN (0,1)(α)

√
diag

{
matrix2,2

[
(I4 − Φ⊗ Φ)−1 × (σ2

νc , 0, 0, σ
2
νl

)′
]}]

where the square root of the vector denotes the square root of each component. The α parameter

controls the tightness of the constraint. The term in the diag operator is just the unconditional

variance of Xt. As (µc, µl) are functions of other identi�ed parameters, they are also identi�ed thus

m = 0.

In the estimation, we set α = 0.025. We also control the accuracy of the �t of the proxies, and impose

that both σ2
νc and σ2

νl
are below 0.1.

A.3 Pricing formulas

We derive the pricing formulas in the general case when the default intensity is a quadratic functions

of the factors. Three di�erent cases are considered successively: when the variance covariance of the

factor process is invertible, and when it is not.

A.3.1 Computation of factor loadings with normalized identity covariance matrix

Let us �rst introduce a fundamental lemma.

Lemma A.1 If ε∗t+1 ∼ N (0, I), we have

Et
[
exp(ϑ′ε∗t+1 + ε′∗t+1V ε

∗
t+1)

]
=

1

|I − 2V |1/2
exp

[
1

2
ϑ′(I − 2V )−1ϑ

]

Proof 1 it can be shown that

∀u ∈ Rn,
∫
Rn

exp(−u′Qu+ ν′u) du =
πn/2

|Q|1/2
exp

(
1/4

ν

′
Q−1ν

)
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Therefore, we have:

Et
[
exp(ϑ′ε∗t+1 + ε′∗t+1V ε

∗
t+1)

]
=

∫
Rn

exp(ϑ′ε∗t+1 + ε′∗t+1V ε
∗
t+1)

1

(2π)n/2
exp

(
−1

2
ε′∗t+1Iε

∗
t+1

)
=

1

(2π)n/2

∫
Rn

exp

[
−ε′∗t+1

(
1

2
I − V

)
ε∗t+1 + ϑ′ε∗t+1

]
du

=
1

2n/2
∣∣ 1
2I − V

∣∣1/2 exp

[
1

4
ϑ′
(

1

2
I − V

)−1
ϑ

]

=
1

|I − 2V |1/2
exp

[
1

2
ϑ′(I − 2V )−1ϑ

]
�

The EURIBOR-OIS spread at time t, with maturity h can be expressed with the price of EURIBOR

loans and OIS:

D(t, h) =
DEUR(t, h)

DOIS(t, h)

= EQ
t

[
exp

(
−
h−1∑
k=0

λt+k+1

)]
= EQ

t [exp(−λt+1)D(t+ 1, h− 1)]

where Dk(t, h) denotes the price of h-maturity product k at time t. We have:

S(t, h) = − 1

h
log (D(t, h)) = REUR(t, h)−ROIS(t, h)

We derive the factor loadings in the general case, where Xt ∈ Rn. We look for closed-form formulas

for some coe�cients Ah, Bh, Ch, such that ∀h,

D(t, h) = exp(Ah +B′hXt +X ′tChXt)

where Xt represents the modelled factors in the economy. Letting λt = λ0 + λ′1Xt +X ′tλ2Xt, we get:

D(t, h) = EQ
t [exp(−λt+1)B(t+ 1, h− 1)]

= EQ
t

[
exp(−λ0 − λ′1Xt+1 −X ′t+1λ2Xt+1)B(t+ 1, h− 1)

]
= exp(−λ0)× EQ

t

[
exp(−λ′1Xt+1 −X ′t+1λ2Xt+1 +Ah−1 +B′h−1Xt+1 +X ′t+1Ch−1Xt+1)

]
= exp(−λ0 +Ah−1)EQ

t

[
exp

(
(B′h−1 − λ′1)Xt+1 +X ′t+1(Ch−1 − λ2)Xt+1

)]
= exp(−λ0 +Ah−1)EQ

t

[
exp

(
B̃′h−1Xt+1 +X ′t+1C̃h−1Xt+1

)]
with B̃h−1 ≡ Bh−1 − λ1 and C̃h−1 ≡ Ch−1 − λ2. The risk-neutral dynamics of Xt are normalized

V AR(1), that is to say Xt+1 = µ∗ + Φ∗Xt + ε∗t+1 where (ε∗t ) is a white noise gaussian process with
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identity covariance matrix. We relax this assumption in A.3.2.

EQ
t

[
exp

(
B̃′h−1Xt+1 +X ′t+1C̃h−1Xt+1

)]
= EQ

t

[
exp

(
B̃′h−1(µ∗ + Φ∗Xt + ε∗t+1) + (µ∗ + Φ∗Xt + ε∗t+1)′C̃h−1(µ∗ + Φ∗Xt + ε∗t+1)

)]
= exp

[
B̃′h−1(µ∗ + Φ∗Xt) + (µ∗ + Φ∗Xt)

′C̃h−1(µ∗ + Φ∗Xt)
]

× EQ
t

[
exp

{(
B̃′h−1 + (µ∗ + Φ∗Xt)

′(C̃h−1 + C̃ ′h−1)
)
ε∗t+1 + ε′∗t+1C̃h−1ε

∗
t+1

}]
where (C̃h−1 + C̃ ′h−1) = 2C̃h−1 as the matrix is the sum of two symmetrical matrix. Using lemma

A.1, we get:

EQ
t

[
exp

(
B̃′h−1Xt+1 +X ′t+1C̃h−1Xt+1

)]
= exp

[
B̃′h−1(µ∗ + Φ∗Xt) + (µ∗ + Φ∗Xt)

′C̃h−1(µ∗ + Φ∗Xt)
]

× 1∣∣∣I − 2C̃h−1

∣∣∣1/2 exp

[
1

2

(
B̃′h−1 + 2(µ∗ + Φ∗Xt)

′C̃h−1

)
{I − 2C̃h−1}−1

(
B̃′h−1 + 2(µ∗ + Φ∗Xt)

′C̃h−1

)′]

For simplicity, we denote Kh ≡ (I − 2C̃h−1).

B(t, h) = exp(Ah +B′hXt +X ′tChXt)

= exp(−λ0 +Ah−1)

× exp
[
B̃′h−1µ

∗ + B̃′h−1Φ∗Xt + µ′∗C̃h−1µ
∗ + µ′∗C̃h−1Φ∗Xt +X ′tΦ

′∗C̃h−1µ
∗ +X ′tΦ

′∗C̃h−1Φ∗Xt

]
× 1

|Kh|1/2
exp

[
1

2

(
B̃′h−1 + 2(µ∗ + Φ∗Xt)

′C̃h−1

)
K−1h

(
B̃h−1 + 2C̃h−1(µ∗ + Φ∗Xt)

)]
= exp(−λ0 +Ah−1)

× exp
[
B̃′h−1µ

∗ + B̃′h−1Φ∗Xt + µ′∗C̃h−1µ
∗ + µ′∗C̃h−1Φ∗Xt +X ′tΦ

′∗C̃h−1µ
∗ +X ′tΦ

′∗C̃h−1Φ∗Xt

]
× 1

|Kh|1/2
exp

[
1

2

(
B̃′h−1 + 2µ′∗C̃h−1 + 2X ′tΦ

′∗C̃h−1

)
K−1h

(
B̃h−1 + 2C̃h−1µ

∗ + 2C̃h−1Φ∗Xt)
)]

With the previous formula, the computation of the factor loadings can be achieved recursively. We

therefore express the Ah, Bh, ahd Ch coe�cients as a function of Ah−1, Bh−1, Ch−1, and the other

parameters. We proceed term by term, from the quadratic component to the constant.

The term in X ′tXt in the exponential is:

X ′tΦ
′∗C̃h−1Φ∗Xt +

1

2

[
2X ′tΦ

′∗C̃h−1K
−1
h × 2C̃h−1Φ∗Xt

]
= X ′t

[
−∆ + Φ′∗C̃h−1Φ∗ + 2Φ′∗C̃h−1K

−1
h C̃h−1Φ∗

]
Xt

By identi�cation we have,

Ch = Φ′∗C̃h−1Φ∗ + 2Φ′∗C̃h−1K
−1
h C̃h−1Φ∗

= Φ′∗
[
C̃h−1 + 2C̃h−1K

−1
h C̃h−1

]
Φ∗

= Φ′∗C̃h−1

[
I + 2K−1h C̃h−1

]
Φ∗

= Φ′∗C̃h−1

[
K−1h Kh + 2K−1h C̃h−1

]
Φ∗

= Φ′∗C̃h−1K
−1
h

[
Kh + 2C̃h−1

]
Φ∗
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Noticing that Kh + 2C̃h−1 = I, we get

Ch = Φ′∗C̃h−1K
−1
h Φ∗ (16)

The coe�cient in Xt writes

B̃′h−1Φ∗Xt + µ′∗C̃h−1Φ∗Xt +X ′tΦ
′∗C̃h−1µ

∗

+
1

2

[(
B̃′h−1 + 2µ′∗C̃h−1

)
K−1

(
2C̃h−1Φ∗Xt

)
+ 2X ′tΦ

′∗C̃h−1K
−1
h

(
B̃h−1 + 2C̃h−1µ

∗
)]

= B̃′h−1Φ∗Xt + µ′∗C̃h−1Φ∗Xt + (Φ′∗C̃h−1µ
∗)′Xt + (B̃′h−1 + 2µ′∗C̃h−1)K−1h C̃h−1Φ∗Xt

+
[
Φ′∗C̃h−1K

−1
h (B̃h−1 + 2C̃h−1µ

∗)
]′
Xt

= B̃′h−1Φ∗Xt + 2µ′∗C̃h−1Φ∗Xt + 2
(
B̃′h−1 + 2µ′∗C̃h−1

)
K−1h C̃h−1Φ∗Xt

By identi�cation,

B′h = B̃′h−1Φ∗ + 2µ′∗C̃h−1Φ∗ + 2
(
B̃′h−1 + 2µ′∗C̃h−1

)
K−1h C̃h−1Φ∗

so: Bh = Φ′∗B̃h−1 + 2Φ′∗C̃h−1µ
∗ + 2Φ′∗C̃h−1K

−1
h

[
B̃h−1 + 2C̃h−1µ

∗
]

= Φ′∗
{
B̃h−1 + 2C̃h−1

[
µ∗ +K−1h

(
B̃h−1 + 2C̃h−1µ

∗
)]}

= Φ′∗
{
B̃h−1 + 2C̃h−1K

−1
h

[
Khµ

∗ + B̃h−1 + 2C̃h−1µ
∗
]}

= Φ′∗
{
B̃h−1 + 2C̃h−1K

−1
h

[
µ∗ + B̃h−1

]}
= Φ′∗

{
2C̃h−1K

−1
h µ∗ + (Kh + 2C̃h−1)K−1h B̃h−1

}
= Φ′∗

{
2C̃h−1K

−1
h µ∗ +K−1h B̃h−1

}
In the end,

Bh = Φ′∗
{

2C̃h−1K
−1
h µ∗ +K−1h B̃h−1

}
(17)

For computation of Ah, let us �rst notice that
1

|Kh|1/2
= exp

(
− 1

2 log |Kh|
)
. We have:
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Ah = −λ0 +Ah−1 + B̃′h−1µ
∗ + µ′∗C̃h−1µ

∗ − 1

2
log |Kh|

+
1

2

{(
B̃′h−1 + 2µ′∗C̃h−1

)
K−1h

(
B̃h−1 + 2C̃h−1µ

∗
)}

= −λ0 +Ah−1 +
(
B̃′h−1 + µ′∗C̃h−1

)
µ∗ − 1

2
log |Kh|

+
1

2

{
B̃′h−1K

−1
h B̃h−1 + 2B̃′h−1K

−1
h C̃h−1µ

∗ + 2µ′∗C̃h−1K
−1
h B̃h−1 + 4µ′∗C̃h−1K

−1
h C̃h−1µ

∗
}

= −λ0 +Ah−1 + B̃′h−1

(
µ∗ +

1

2
K−1h B̃h−1 +K−1h C̃h−1µ

∗
)

+ µ′∗C̃h−1

(
µ∗ +K−1h B̃h−1 + 2K−1h C̃h−1µ

∗
)
− 1

2
log |Kh|

= −λ0 +Ah−1 + B̃′h−1K
−1
h

(
Khµ

∗ +
1

2
B̃h−1 + C̃h−1µ

∗
)

+ µ′∗C̃h−1K
−1
h

(
Khµ

∗ + B̃h−1 + 2C̃h−1µ
∗
)
− 1

2
log |Kh|

= −λ0 +Ah−1 + B̃′h−1K
−1
h

[(
I − C̃h−1

)
µ∗ +

1

2
B̃h−1

]
+ µ′∗C̃h−1K

−1
h

(
µ∗ + B̃h−1

)
− 1

2
log |Kh|

Then, noticing that

B̃′h−1K
−1
h C̃h−1µ

∗ =
(
µ′∗C̃h−1K

−1
h B̃h−1

)′
= µ′∗C̃h−1K

−1
h B̃h−1 as it is a scalar.

The previous expression simpli�es into:

Ah = −δ0 − λ0 +Ah−1 + B̃′h−1K
−1
h

(
µ∗ +

1

2
B̃h−1

)
+ µ′∗C̃h−1K

−1
h µ∗ − 1

2
log |Kh| (18)

A.3.2 Computation with general covariance of residuals

This section is an extension to the case where the variance-covariance matrix of the residuals of the

VAR is not the identity matrix. Let us assume ε∗t ∼ N (0,Σ). Let us denote T = Σ1/2. We know

that ε∗t = Tηt where ηt is a normalized Gaussian white noise. Lemma A.1 becomes:

Et
{

exp
(
ϑ′ε∗t+1 + ε′∗t+1V ε

∗
t+1

)}
= Et

{
exp

(
ϑ′Tηt+1 + η′t+1TV Tηt+1

)}
= Et

{
exp

(
ϑ̃′ηt+1 + η′∗t+1Ṽ η

∗
t+1

)}
=

1∣∣∣I − 2Ṽ
∣∣∣1/2 exp

{
1

2
ϑ̃′(I − 2Ṽ )−1ϑ̃

}

where ϑ̃ = Tϑ and Ṽ = TV T . The previous expression can be decomposed:

ϑ̃′(I − 2Ṽ )−1ϑ̃ = ϑ′T (I − 2TV T )−1Tϑ

and T (I − 2Ṽ )−1T = (Σ−1 − 2V )−1
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In addition, we also have:

|I − 2TV T |1/2 = |I − 2ΣV |1/2

Therefore:

1

|I − 2Ṽ |1/2
exp

{
1

2
ϑ̃′(I − 2Ṽ )−1ϑ̃

}
=

1

|I − 2ΣV |1/2
exp

{
1

2
ϑ′(Σ−1 − 2V )−1ϑ

}
(19)

which represents little change compared to the case with identity variance covariance. Let us denote

K̃h = (Σ−1−2V )−1. We can use the same methodology as in the �rst section with very little di�erence:

Kh is replaced with K̃h and the factorization di�ers. We obtain the following factor-loadings:

Ah = −λ0 +Ah−1 + B̃′h−1K̃
−1
h

(
1
2 B̃h−1 + Σ−1µ∗

)
+ µ′∗C̃h−1K̃

−1
h Σ−1µ∗ − 1

2 log
∣∣∣K̃h

∣∣∣− 1
2 log |Σ|

Bh = Φ′∗
{

2C̃h−1K̃
−1
h Σ−1µ∗ + Σ−1K̃−1h B̃h−1

}
Ch = Φ′∗C̃h−1K̃

−1
h Σ−1Φ∗
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